Философия математики Готтлоба Фреге

Надеюсь, в данном сочинении я сделал правдоподобным то, что арифметические законы являются аналитическими, а следовательно, априорными суждениями. Сообразно этому арифметика есть лишь дальнейшее развитие логики, а каждое арифметическое предложение есть логический закон, хотя и производный.

Г.

Фреге, Основоположения арифметики

Критика противоположных подходов к определению числа

Готтлоб Фреге (1848-1925) рассматривал создание новой логики не как конечную цель, а как средство анализа арифметики. Отсутствие единства мнений среди математиков о значении ее исходных терминов подтолкнуло Фреге к тому, чтобы начать размышлять о логическом анализе арифметики. Во времена Фреге под арифметикой понимали теорию натуральных чисел вместе с основаниями анализа. Поэтому предметом интенсивного логического анализа стали прежде всего исходные понятия арифметики — число, множество, равенство, переменная и функция. Среди них обоснование понятия числа Фреге считал наиболее актуальным и приоритетным.

По его мнению, самые простые и неэффективные ответы на вопрос «что такое число?» предлагают те, кто полагает, что значение понятия числа может быть установлено непосредственно и не требует специальной методологической и, возможно, логической рефлексии. Число с этой точки зрения есть либо определенный психологический объект, либо тот знак (цифра), которым оно обозначается. Психологизм и формализм в математике берут свое начало, считает Фреге, именно из этой порочной методологической установки. Математики говорят, что числа абстрагируются из классов, или множеств, но они при этом не определяют, что именно они понимают под абстракцией и классом. Абстрагируя, мы следуем от объектов к понятию, которые ему подчиняются (образуют его объ- ем). Но такой математик, как Г. Кантор, понимает под абстракцией нечто иное. Для него абстракция означает создание новых объектов из уже данных. По его мнению, из наблюдения пяти точек, расположенных на одной линии, мы сначала абстрагируем их упорядоченность, что дает нам понимание значения порядкового числа «пятый», а затем посредством новой абстракции от порядка, в котором расположены эти точки, мы получаем определение кардинального числа «пять». Такая абстракция, согласно Фреге, является «волшебной»29.

По мнению Фреге, легко доказать бесплодность любого «непосредственного» определения числа. Если математик утверждает, что число — это идея, знак, целое, состоящее из подобных друг другу частей, или результат абстрагирования от множества вещей, то следует просто спросить о применимости подобных определений при конструировании математики как целостной науки. Если их нельзя применить буквально или их использование не приводит к доказательству законов арифметики, такие определения следует признать бесполезными.

Неопределенность в понимании числа порождает неопределенность в определении других исходных понятий арифметики. При рассматриваемой трактовке понятия числа знак равенства не может быть использован для обозначения тождества. Каждое вхождение числа «5» в равенство «5 — 5» будет обозначать разные последовательности объектов, и следовательно, знак « = » не является знаком тождества. Имя «переменная», используемое для обозначения неопределенных величин, включая числа, само по себе ошибочно, полагает Фреге. Математики говорят о переменных так, как если бы они обозначали нечто переменное и неопределенное. Но это, по его мнению, не так. Референтом выражения может быть только нечто постоянное и определенное. Переменные величины принципиально отличаются от единичных числовых терминов и используются двумя различными способами. Согласно первому, они указывают открытое место, на которое может подставляться константа, как, например, в выражении «х + 3». Согласно второму, они функционируют в качестве законов, как, например, в равенстве «х+у = >> + *». В обоих случаях назначение переменных величин состоит в том, чтобы указывать место вхождения референта, а не обозначать его.

Проблемы с пониманием переменных величин переносятся на понятие функции. Общепринятое определение функции «Если каждое значение действительной переменной jc, принадлежащее ее рангу, коррелирует с определенным числом у, тогда у определяется как переменная и называется функцией действительной переменной х; у = Дх)», согласно Фреге, не выдерживает критики. Как и переменные, функции не могут обозначать неопределенные числа или величины.

Фреге называет несколько общих методологических причин неопределенности и путаницы в основаниях математики своего времени. Это тенденции смешивать знак и то, что он обозначает; объект и понятие; субъективное (психологическое) и объективное (логическое); рассматривать значения знаков вне их контекста.

Последняя тенденция особенно распространена и опасна. Математики не видят, что их наука — комплексная система знаний, в которой все законы, определения и теоремы взаимосвязаны и ничто не имеет самостоятельного значения вне данной системы. Значение математических терминов определяется не тем представлением, которое они вызывают в нашем уме, а тем местом, которое они занимают в математической системе; теми конкретными функциями, которые они в ней выполняют.

Убеждение Фреге в дефектности всех существующих в его время оснований арифметики определяет структуру Осново положений арифметики. Главная задача этой книги — обосновать новый подход к определению понятия числа, устранить все неопределенности в основании арифметики.

В первую очередь Фреге стремится устранить все сомнения в аналитическом характере математических истин. Если этого не сделать, полагает он, невозможно будет доказать объективность и всеобщность математических законов.

Хотя Фреге и не собирался, по его словам, вкладывать новый смысл в определения аналитических и синтетических истин, а только более точно истолковать, что имели в виду другие авторы, и прежде всего Кант, результат получился впечатляющим. В конце «Основоположений арифметики» Фреге смог даже обвинить Канта в том, что предложенная им дихотомия аналитического и синтетического не является исчерпывающей30.

Основание фрегевской классификации предложений на аналитические и синтетические, априорные и апостериорные составляет положение, что нас должно интересовать только, какое обоснование следует считать лучшим. Таким обоснованием, полагает Фреге, является дедуктивное доказательство. Результат обоснования зависит от всех использованных посылок. В совершенном обосновании ни одна из начальных посылок не требует доказательства.

Посылки по своему статусу делятся на «факты» — недоказуемые истины, высказывающиеся о свойствах частных объектов, — и «универсальные законы» — утверждения общего порядка, не требующие сами по себе доказательства.

Исключая возможность предложений, аналитических и апостериорных одновременно, как противоречивую по определению, Фреге считает, что

Предложение — априорное, если оно дедуктивно выводимо из некоторого множества посылок. В противном случае оно — апостериорное.

Предложение — аналитическое, если оно выводимо из одних только универсальных логических законов и определений, включая все высказывания, от которых зависит их корректность. В противном случае, т. е. когда хотя бы одна из посылок представляет суждение о частном факте, выводимое предложение — синтетическое.

ные границы области мыслимого и считаемого, ее логическую завершенность. Из этого факта можно прийти к поспешному выводу, что фундаментальные принципы арифметики не имеют никакого отношения к ограниченной области объектов, отличительные признаки которых они выражают, как выражают аксиомы геометрии отличительные признаки пространственных отношений.

Наоборот, эти фундаментальные принципы должны охватывать все, что мыслимо; а высказывание, соответствующее этому высшему уровню универсальности, с полным основанием должно быть отнесено к сфере логики»31.

Кант недооценил значение аналитических истин, считает Фреге. Как и синтетические истины, они могут давать новое знание о мире. Знание немногих законов арифметики позволяет обосновывать аналитически истинность арифметических утверждений, имеющих прямое отношение к решению реальных практических проблем. Иными словами, аналитический характер арифметических истин, основанный на их дедуктивной выводимости, никак нельзя назвать бесплодным.

Вместе с доказательством аналитичности арифметических истин Фреге опровергает их возможность быть апостериорными истинами. Если бы арифметические истины были апостериорными, тогда они были бы индуктивными истинами. Но последнее невозможно, потому что индуктивное обоснование само основано на использовании теории вероятностей и тем самым — законов арифметики. «Вероятно, саму процедуру индукции можно оправдать только с помощью общих предложений арифметики, если под ней не понимать простую привычку. Последняя совершенно не обладает ручающейся за истину силой. В то время как научная процедура согласно объективным стандартам то находит обоснованной высокую вероятность в одном единственном примере, то считает не имеющими цены тысячи событий, привычка определяется числом и силой впечатлений и субъективными обстоятельствами, которые не имеют никакого права оказывать влияние на суждение. Индукция должна опираться на учение о вероятности, поскольку она может сделать предложение не более чем вероятным. Однако не видно, как это учение можно развить, не предполагая арифметических законов»32.

Далее, если бы арифметические истины были апостериорными истинами, тогда они по определению зависели бы от психологических, физиологических и физических обстоятельств и условий. Но в этом случае математика потеряла бы свою всеобщность, объективность и обязательность. В сущности она бы самоупразднилась как наука, так как каждая новая эмпирическая ситуация требовала бы создания новых законов и теорем. Наконец, если бы математические истины были апостериорными, тогда они были бы истинны только в действительном мире и не имели бы никакой обязательной силы для возможных объектов пространственного созерцания, относящихся к области геометрических истин, и необходимых объектов мыслимых вещей, составляющих область универсальных логических истин. Значит, делает вывод Фреге, математические истины носят априорный характер.

Арифметические истины, развивает дальше свою мысль Фреге, также не могут быть синтетическими истинами. По его мнению, возможны только три источника познания — наблюдение; априорная пространственная и временная интуиция; логическая способность. Наблюдение может сказать нам только, каковы вещи на самом деле. Априорная пространственная и временная интуиция сообщает нам, какими должны быть вещи, если нам приходится их воображать в пространстве и времени. Но ни наблюдение, ни интуиция не позволяют узнать, каковы вещи на самом деле, когда их не наблюдают или не воображают. Знание о вещах вне наблюдения и воображения способна дать только наша способность логического мышления. ;

Итак, все математические истины — априорные и аналитические. Данный вывод Фреге признает хотя и вероятным, но все же важным «исправлением» точки зрения Канта44.

Достигнув этого вывода, Фреге разворачивает критику всех определений понятия числа, не удовлетворяющих требованиям априорности и аналитичности. Числа не являются свойствами, с помощью которых предикативно различаются отдельные вещи. Приписывание числа вещи отличается от указания цвета лошади, длины дороги, веса куска металла. Сказать, что на этом дереве листья зеленые, означает ска- зать нечто о каждом листе и о листве дерева в целом. Утверждение же, что на этом дереве тысяча листьев, означает утверждение нечто, что не может быть приписано ни отдельному листу, ни листве дерева в целом. Таким образом, число не есть свойство того же рода, что и свойство «зеленый»33.

Ответы на вопрос «Сколько?» требуют предварительного знания того, что требуется сосчитать. Когда задают подобный вопрос, сначала определяют множество вещей, подлежащих счету, — деревья, автомобили, дома, людей, деньги и т. п. Ответы на вопросы «Какой длины эта вещь?», «Сколько она весит?» такого знания не требуют.

Одно и то же множество вещей может быть сосчитано разными способами и соответственно представлено разными числами. Ботинки можно сосчитать как четыре ботинка, как две пары ботинок, как два правых и два левых ботинка. Это также доказывает, что число не является свойством физических вещей, неотъемлемо присущим им наподобие протяженности или веса. Простыми аргументами против того, что числа есть свойства вещей, служат, согласно Фреге, числа О и 1 — отсутствие каких либо вещей, соответствующих первому, и двусмысленность второго. В самом деле, невозможно определенно ответить, какой вещи соответствует число 0. Но в не меньшей степени неопределенен, доказывает Фреге, и вопрос относительно числа 1. «Мы вновь задаем вопрос: Какой смысл в том, чтобы какому- нибудь предмету прилагать свойство «один», если сообразно пониманию каждый предмет может как быть, так и не быть одним? Каким образом на столь расплывчатом понятии может основываться наука, которая снискала себе славу как раз самой большей определенностью и точностью?»34 А ведь именно из 1 посредством последовательного добавления все новых единиц порождается натуральный ряд чисел — фундамент всей математики.

Счету подлежат все вещи универсума, материальные и идеальные, реальные и воображаемые. Следовательно, числа есть универсальные свойства.

Высказывания о числах — не свойства вещей, не опытные истины, не субъективные представления и, хотя и функционируют наподобие прилагательных, не прилагательные. Они существуют объек- тивно, независимо от того, кто их мыслит, вне времени и пространства и не подвержены каким-либо изменениям. Следовательно, они могут быть только понятиями. Понятия — не субъективные представления, не тождественны предикатам. Предикат может обозначать число, но только если это число подпадает под определенное понятие. Свойство «Земля имеет одну Луну» — свойство не представления, не слова, а понятия Луна Земли. Число как понятие объясняет, почему можно считать физические и нефизические вещи по отдельности и вместе; почему можно образовать число 0, которому не соответствует ни одна вещь. Например, известно, что планета Венера не имеет спутников. Но существует понятие Луна Венеры, которому можно приписать число 0 посредством утверждения «Венера имеет 0 Лун».

Вывод Фреге категоричен: «Число не абстрагируется от вещей по типу цвета, веса, твердости и не является свойством вещей в том смысле, как эти последние. Все еще остается вопрос, к чему относится то, что высказывается посредством указания на число.

Число — не вещественно, но также и не субъективно, оно не является представлением.

Число не возникает прибавлением вещи к вещи. Также ничего в этом отношении не меняет и придание имени соответственно каждому прибавлению.

Выражения «многое», «множество», «множественность» из-за их неопределенности не годятся для объяснения числа»47.

<< | >>
Источник: Светлов Виктор Александрович . Философия математики. Основные программы обоснования математики XX столетия: Учебное пособие. — М.: КомКнига. — 208 с.. 2006

Еще по теме Философия математики Готтлоба Фреге:

  1. Готтлоб Фреге МЫСЛЬ: ЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ9
  2. 1. ОТ ФРЕГЕ К СЕМАНТИЧЕСКОМУ ПОНЯТИЙНОМУ АППАРАТУ СОВРЕМЕННОЙ ЛОГИСТИЧЕСКОЙ ФИЛОСОФИИ
  3. Философия математики Бертрана Рассела
  4. Философия математики
  5. 5. Эпистемологизация философии математики
  6. ПРОБЛЕМА ИНТУИЦИИ В ФИЛОСОФИИ МАТЕМАТИКИ ПУАНКАРЕ
  7. 2. Сводка направлений в философии математики
  8. 8. Великий вопрос: философия или математика
  9. Философия математики Лейтзена Эгберта Яна Брауэра
  10. 4. Платонизм как философия работающего математика
  11. Черняк B.C. ОППОЗИЦИЯ АРИФМЕТИКИ И ГЕОМЕТРИИ В АНТИЧНОЙ ФИЛОСОФИИ И МАТЕМАТИКЕ
  12. Глава 1.ПОИСКИ НОВОЙ ФИЛОСОФИИ МАТЕМАТИКИ
  13. Целищев В.В.. Философия математики. 4.1.— Новосибирск: Наука,. —212 с., 2002
  14. 2. ОТ ФРЕГЕ К СЕМАНТИЧЕСКОМУ ПОНЯТИЙНОМУ АППАРАТУ ФЕНОМЕНОЛОГИИ
  15. Асмус В.Ф.. Проблема интуиции в философии и математике. (Очерк истории: XVII - начало XX в.) М.: Мысль - 315 с., 1965