Регуляторные функции гормонов клеток, сочетающих выработку гормонов и неэндокринные функции Регуляторные функции гормонов плаценты
Плацента тесно анатомически и функционально связана с организмами матери и плода, поэтому принято говорить о комплексе «мать—плацента- плод», или «фетоплацентаэном комплексе». Синтез в плаценте эстриола происходит не только из эстрадиола матери, но и из дегидроэпиандросте- рона, образуемого надпочечниками плода.
Основная часть гормон эв плаценты у человека по своим свойствам и даже строению напоминает гипофизарные гонадотропин и пролактин. В наибольших количествах при беременности плацентой продуцируется хорионический гонадотропин, оказывающий регул норные эффекты не только на процессы дифференцировки и развития плода, но и на метаболизм в организме матери. Гормон обеспечивает в орг шизме матери задержку солей и воды, необходимых для растущего плоде , стимулирует секрецию ва- зопрессина, активирует механизмы иммунитет; у матери. Регуляторные функции гормонов пимуса
Тимус (вилочковая железа) является центральным органом иммунитета, обеспечивающим продукцию специфических Т-лимфоцитов. Тимоциты секретируют в кровь гормональные факторь, оказывающие не только влияние на дифференцировку Т-клеток, но и зызывающие ряд общих регуляторных эффектов в организме. Основные эффекты гормонов тимуса (тимозина, тимопоэтина, тимулина) описаны t главе 8 «Иммунная система». Гормоны тимуса влияют на процессы синтеза клеточных рецепторов к медиаторам и гормонам, стимулируют разруше -ше ацетилхолина в нервно- мышечных синапсах, регулируют состояние уп еводного и белкового обмена, а также обмена кальция, функции щитовидной и половых желез, модулируют эффекты глюкокортикоидов, тироксин i (антагонизм) и соматотро- пина (синергизм). В целом вилочковая железе рассматривается как орган интеграции иммунной и эндокринной систем с рганизма. Регуляторные функции гормонов пэчек
В почках отсутствует специализированная эндокринная ткань, однако ряд клеток обладает способностью к синтезу и сек зеции многих биологически активных веществ, обладающих всеми свойств; ми классических гормонов. Установленными гормонами почек являются: 1) кальцитриол — третий кальцийрегулирующий гормон, 2) ренин — на1 альное звено ренин-ангио- тензин-альдостероновой системы, 3) эритропоэтин. Синтез, секреция и физиологические эффекты калъцитриола
Калъцитриол является активным метаболитом витамина D3 и в отличие от двух других кальцийрегулирующих гормонов - паратирина и кальцитони- на —имеет стероидную природу. Синтез кальдитриола происходит в три этапа (рис. 6.24). Первый этап протекает в кожз, где под влиянием ультрафиолетовых лучей из провитамина образуется штамин D3 или холекальци- ферол. Второй — связан с печенью, куда холека льциферол транспортируется кровью и где в эндоплазматическом ретикул 'ме гепатоцитов происходит его гидроксилирование по 25-му атому углерода с образованием 25(OH)D3. Этот метаболит поступает в кровь и циркулирует в связи с альфа-глобулином. Его физиологические концентрации не влияют на обмен кальция. Третий этап осуществляется в почках, где в мгтохондриях клеток проксимальных канальцев происходит второе гидротоптирование и образуются два соединения; l,25-(OH)2-D и 24,25-(OH)2-D. Первое — является наиболее активной формой витамина D3, обладает мощным регуляторным влиянием на обмен кальция в организме и называется кальцитриолом. Образование в почках этого гормона регулируется паратирином, который стимулирует гидроксилирование по первому атому углерода. Таким же эффектом обладает и гипокальциемия. При избытке кальция в крови гидрокси-

Рис. 6.24. Схема образования к, тьцитриола или активной формы витамина D3.
Под воздействием ультрафиолетовых лучей в коже из холестерина образуется витамин D3; поступая с кровью в печень, он подвс згается первому гидроксилированию по 25-му атому углерода, затем из печени с кровью noi адает в почки, где подвергается второму гидроксилированию по 1-му атому углерода, что и i едет к образованию дважды гидроксилированного витамина или кальцитриола.

Рис. 6.25. Основные эффекты \ альцитриола.
Под влиянием паратирина почка се третирует кальцитриол, основные эффекты которого (жирные стрелки) заключаются в стихи пяции всасывания в кишечнике в кровь ионов кальция и фосфата и усилении их захвата косз ной тканью. Эффекты кальцитриола на почку (стимуляция реабсорбции кальция и фосфора) в сражены слабее.

Рис. 6.26. Эффекты трех кальцийрегулирующих горы gt;нов на органы-мишени.
В почке паратирин и кальцитриол активируют реабсорбцик кальция, а кальцитонин ее угнетает. И паратирин, и кальцитонин подавляют реабсорбцию lt; юсфата. В кишечнике кальцитриол и паратирин активируют всасывание кальция и фосфата Кальцитонин и кальцитриол способствуют отложению кальция в костях, а паратирин акти щрует резорбцию кости и выход кальция в кровь.
лирование происходит по 24-му атому углерода и синтезируется второе соединение — 24,25-(OH)2-D, которое обладает сп юобностью угнетать секрецию паратирина по принципу обратной связи. Инактивация кальцитриола происходит в печени.
Основной эффект кальцитриола (рис. 6.25) заключается в активации всасывания кальция в кишечнике. Гормон стал улирует все три этапа всасывания: захват ворсинчатой поверхностью клетки, внутриклеточный транспорт, выброс кальция через базолатеральн 'Ю мембрану во внеклеточную среду. Действие кальцитриола на эпителиальные клетки кишечника состоит в индуцировании синтеза энтероцита ни специальных кальций- связывающих и транспортирующих белков — к ъгьбайндинов.
Участие трех кальцийрегулирующих гормонов в гомеостазисе кальция и фосфора показано на рис. 6.26.
Недостаточность кальцитриола проявляется в виде рахита, т. е. нарушения созревания и кальцификации хрящей и кости у детей, либо остеомаляции, т. е. падения минер шизации костей после завершения роста скелета. При этом сдвиги уровня кальция в крови и клетках обусловливают угнетение нейромышечной возбудимости и мышечную слабость. Образование ренича и основные функции
ренин-ангиотензи н-алъдостероновой системы
Ренин образуется в виде г роренина и секретируется в юкстагломерулярном аппарате (ЮГА) (от латинских слов juxta — около, glomerulus — клубочек) почек миоэпителиоидны ни клетками приносящей артериолы клубочка, получившими название юкстагпомерулярных (ЮГК). Структура ЮГА приведена на рис. 6.27. В ЮГА кроме ЮГК также входит прилегающая к приносящим артериолам час ь дистального канальца нефрона, многослойный эпителий которого образ} ет здесь плотное пятно — macula densa. Секреция ренина в ЮГК регулируется четырьмя основными влияниями. Во-первых, величиной давления крови в приносящей артериоле, т. е. степенью ее растяжения. Снижение растяжения активирует, а увеличение — подавляет секрецию ренина. Во-втозых, регуляция секреции ренина зависит от концентрации натрия в мочт дистального канальца, которая воспринимается macula densa — своеобразным Na-рецептором. Чем больше натрия оказывается в моче дистальногз канальца, тем выше уровень секреции ренина. В-третьих, секреция ренина регулируется симпатическими нервами, ветви которых заканчиваются ня ЮГК, медиатор норадреналин через бета-адренорецепторы стимулирует секрецию ренина. В-четвертых, регуляция секреции ренина осуществляется по механизму отрицательной обратной связи, включаемой уровнем 1 крови других компонентов системы — ангиотензина и альдостерона, а т 1кже их эффектами — содержанием в крови натрия, калия, артериальным давлением, концентрацией простагландинов в почке, образующихся под влиянием ангиотензина.
Кроме почек образование ренина происходит в эндотелии кровеносных сосудов многих тканей, млокарде, головном мозге, слюнных железах, клубочковой зоне коры надпочечников.
Секретированный в кр звь ренин вызывает расщепление альфа-глобулина плазмы крови — ангиотензиногена, образующегося в печени. При этом в крови образуется (рис. 6.118) малоактивный декапептид ангиотензин-1, который в сосудах почек, легких и других тканей подвергается действию превращающего фермента (карбоксикатепсин, кининаза-2), отщепляющего от ангиотензина-1 две аминокислоты. Образующийся октапептид ангиотензин- II обладает большим числом различных физиологических эффектов, в том числе стимуляцией ктубочковой зоны коры надпочечников, секрети-

Рис. 6.27. Схема юкстагломерулярного аппарата по1 ек, включающего юкстагломерулярные клетки стенки приносящей артериолы, ьлетки плотного пятна (macula densa) стенки дистального канальца и мезангиальные клетки. Основное место выработки ренина — юкстагломерулярные клетки принос идей артериолы клубочка.

Рис. 6.28. Активация секреции ренина и образование в крови ангиотензина-Н.
Показаны три вида стимулов для секреции ренина юкол гломерулярными клетками почек: снижение АД в приносящей артериоле клубочка, повыи ение симпатической активности, влияния macula densa, вызванные сдвигами уровня натрия. 1од влиянием фермента ренина от молекулы белка ангиотензиногена отщепляется декапеги ид —ангиотензин-1. Этот пептид подвергается воздействию превращающегося фермента (ПФ) дипептидкарбоксилазы клеток эндотелия сосудов легких, почек и др., отщепляющей две ;г инокислоты. Образующийся октапептид является ангиотензином-II.
рующей альдостерон, что и гало основание называть эту систему ренин-ан- гиотензин-альдостероновой. \нгиотензин-П, кроме стимуляции продукции альдостерона, обладает след, ющими эффектами: вызывает сужение арте риальных сосудов, активирует симпатия» кую нервную систему как на уровне центров, так и способствуя син гезу и освобождению норадреналина в синапсах, повышает сократимое! ь миокарда, увеличивает реабсорбь ию натрия и ослабляет клубочковую фильтрацию в почках, способствует формиро !анию чувства жажды и питьевого поведения. Таким образом, ренин-а и иотензин-альдостероновая система участвует
в регуляции системного и почечного кровообращения, объема циркулирующей крови, водно-солев эго обмена и поведения.
Еще по теме Регуляторные функции гормонов клеток, сочетающих выработку гормонов и неэндокринные функции Регуляторные функции гормонов плаценты:
- Регуляторные функции гормонов эндокринных тканей в органах, обладающих неэндокринными функциями Регуляторные функции гормонов поджелудочной железы
- Регуляторные функции гормонов эпифиза
- Регуляторные функции гормонов половых желез
- Регуляторные функции гормонов надпочечников
- Регуляторные функции гормонов щитовидной железы
- Регуляторная функция гормонов сосудистого эндотелия
- Регуляторные функции гормонов гипофиза
- Регуляторные функции гормона околощитовидных желез
- Регуляторные эф ренты гормонов сердца
- Химическая природа и общие механизмы действия гормонов
- Виды и пути действия гормонов
-
Педагогика -
Cоциология -
БЖД -
Биология -
Горно-геологическая отрасль -
Гуманитарные науки -
Искусство и искусствоведение -
История -
Культурология -
Медицина -
Наноматериалы и нанотехнологии -
Науки о Земле -
Политология -
Право -
Психология -
Публицистика -
Религиоведение -
Учебный процесс -
Физика -
Философия -
Эзотерика -
Экология -
Экономика -
Языки и языкознание -