Интегративные механизмы регуляции водно-солевого обмена и гомеостатическая функция почек


Водно-солевой гомеостазис является одной из важнейших констант внутренней среды организма. От состояния водно-солевого обмена зависят фундаментальные свойства клеток и тканей (энергетический и пластический метаболизм, возбудимость, проводимость и сократимость, секреторная способность и т.
п.) и, соответственно, функции практически всех физиологических систем. Основные характеристики водно-солевого обмена — количество поступающих в организм жидкости и солей, объемы внеклеточных и внутриклеточных водных пространств, содержание в них отдельных электролитов и осмотическое давление, наконец, выделение воды и солей почками — имеют взаимосвязанные комплексные механизмы регуляции. Эти механизмы легко проследить на примерах изменения приема жидкости или ее потерь, сдвигов баланса ионов натрия и калия, изменения объема крови.
Нарушения баланса веществ могут проявляться в виде положительного или отрицательного дисбаланса. Положительный водный дисбаланс получил название гипергидратации, а отрицательный — дегидратации. Изменения водного баланса могут сопровождаться или не сопровождаться изменениями электролитного баланса и, соответственно, осмотического давления. В зависимости от осмолярности виды водного дисбаланса подразделяют на изоосмотические, гиперосмотические и гипоосмотические. Эти понятия относят к внеклеточной среде организма, но благодаря механизмам саморегуляции поддерживается осмотическое равновесие между вне- и внутриклеточной средой, поэтому изменения осмолярности внеклеточной среды неизбежно сопровождаются аналогичными сдвигами осмотического давления и внутри клеток. Водный дисбаланс может быть и следствием изменения коллоидно-осмотического (онкотического) давления плазмы крови. Гомеостатические механизмы при гиперосмотической дегидратации
Такой вид водного дисбаланса возникает при дефиците поступления воды в организм, а также в случаях, когда потери воды превышают потери солей или при потерях свободной от электролитов воды. Примером этого типа дисбаланса является пребывание человека в пустыне, когда недостаток воды для питья сочетается с повышенными перспирационными (через кожу и дыхательные пути) потерями воды. Недостаточное поступление воды в организм может быть следствием отсутствия чувства жажды при патологии диэнцефальной области головного мозга, нарушений режима кормления и ухода за детьми грудного возраста, больными при потере сознания, нарушений глотания.
Ограничение приема воды (рис. 14.14) приводит к дегидратации внутренней среды организма, при этом имеет место повышение осмотического давления плазмы крови и внеклеточной жидкости, что дало основание именовать этот вид дегидратации гиперосмотической, или истинной. Повышение осмотического давления плазмы крови вызывает перераспределение жидкости и электролитов между кровью, внеклеточной жидкостью и лимфой, а также между внеклеточной и внутриклеточной средой, направленное на нормализацию сдвига осмотического давления. Начальные механизмы регуляции гомеостазиса при этом типе дегидратации заключаются в буферировании белками и эритроцитами катионов, образовании с ними сложных химических соединений, с измененными осмотическими свойствами и гидрофильностью, диффузии осмотически активных веществ из крови в тканевую жидкость и лимфу, осмотическом токе воды в противоположном направлении, усилении всасывания воды в кишечнике. При небольших физиологических уровнях дегидратации этих механизмов может быть достаточно для обеспечения водно-солевого гомеостазиса.
Повышенное осмотическое давление жидкостей внутренней среды раздражает осморецепторы, приводя к формированию осморегулирующих рефлексов и жажды.
Осморегулирующие рефлексы начинаются от периферических и центральных осморецепторов (рис. 14.15). Периферические осморецепторы расположены в интерстициальном пространстве тканей и кровеносных сосудах печени (система воротной вены), сердца, пищеварительного тракта, почек, селезенки, а также в рефлексогенной зоне каротидного синуса. Поскольку осмотическое давление связано преимущественно с ионами натрия, часть осморецепторов являются специализированными натриорецепторами. Наиболее мощными рецептивными полями для натрия являются интерстициальные пространства печени и предсердий. Имеются также тканевые рецепторы, воспринимающие концентрацию ионов калия, кальция и магния. Центральные осморецепторы — клетки супраоптического ядра гипоталамуса, непосредственно воспринимающие сдвиги осмотического давления притекающей в межуточный мозг крови и концентрацию в ней натрия (натриорецепторы).
Афферентная информация от тканевых осмо- и натриорецепторов поступает по волокнам блуждающего нерва и задних корешков спинного мозга в центральную нервную систему, где направляется в центр осморегу-




Рис. 14.14. Схема компенсаторных реакций при ограничении приема или потерях воды, т. е. при гиперосмотической дегидратации. Основные реакции направлены на восполнение объемов воды (жажда, повышение реабсорбции воды в почках) и выведение избытка натрия с мочой (угнетение реабсорбции катиона в почках).


ляции, локализованный в ядрах переднего гипоталамуса — супраоптиче- ском и паравентрикулярном. Эфферентное звено осморегулирующих и на- трийрегулирующих рефлексов включает как вегетативные нервы, так и гормональные сигналы. Осмо- и натрийрегулирующие рефлексы увеличивают нейросекрецию и содержание в крови вазопрессина. Избыток ионов натрия в крови стимулирует секрецию натрийуретического атриопептида. Вазопрессин повышает в почках проницаемость дистальных канальцев и собирательных трубочек для воды, и она пассивно реабсорбируется по осмотическому градиенту, т. е. реализуется механизм концентрирования мочи. Вазопрессин повышает всасывание воды и в других органах — кишечнике, желчном пузыре, слюнных и пищеварительных железах.
Натрийуретический атриопептид, как и, в меньшей степени, вазопрессин, ведут к повышенному выведению натрия из крови, что устраняет увеличение осмотического давления.

Активация реабсорбции воды, концентрирование мочи, снижение осмолярности крови
Рис. 14.15. Осморегулирующий рефлекс.


Повышение осмотического давления крови при ограниченном поступлении воды в организм или ее чрезмерных потерях вызывает раздражение сосудистых и центральных (гипоталамических) осморецепторов, следствием чего является увеличение секреции в кровь вазопрессина, активация обратного всасывания воды в канальцах почек и ее поступление в кровь, что ведет к нормализации осмотического давления крови.
Продукция вазопрессина возрастает и при значительном снижении объема циркулирующей крови и артериального давления. Это происходит благодаря механорецептивному рефлексу, берущему начало от рефлексогенных зон сосудов и сердца.
Важнейшей приспособительной реакцией организма при дегидратации организма является жажда. Жажда — это субъективное ощущение человека, возникающее при абсолютном или относительном (к содержанию натрия) дефиците воды в организме и приводящее к поведенческой реакции по приему воды. Таким образом, жажда является одной из основных биологических мотиваций (т. е. побуждений к деятельности), обеспечивающих поддержание жизнедеятельности человека. Формирование чувства жажды связано с возбуждением питьевого центра, локализованного в структурах гипоталамуса и лимбики (рис. 14.16). Возбуждение этого центра обусловлено несколькими причинами. Bo-цервых, при повышении осмотического давления крови и внеклеточной жидкости, уровня натрия в них происходит раздражение центральных и периферических осморецепторов и рефлекторное возбуждение центра. Во-вторых, возбуждение центра и возникновение жажды имеет место и при уменьшении объема циркулирующей крови без сдвига осмотического давления. В этом случае ее формирование обусловлено двумя механизмами: 1) волюморефлексом от волюморецепто- ров правого предсердия и полых вен, возникающим в ответ на уменьшение растяжения этих областей низкого давления сниженным объемом крови;




Рис. 14.16. Механизм развития жажды.
Стимуляция гипоталамического питьевого центра и возникновение чувства жажды происходит под влиянием повышенного осмотического давления крови, образования в крови и ткани мозга ангиотензина-И, снижении объема крови и артериального давления.
2) уменьшенный объем крови ведет к активации юкстагломерулярного аппарата почек и секреции ренина, что увеличивает в крови уровень ангио- тензина-Н. Ангиотензин-Н — один из мощных дипсогенных (от греческого dipsa —жажда) факторов, стимулирующий структуры субфорникального органа (СФО) межуточного мозга, который является частью питьевого центра. В-третьих, возбуждение питьевого центра и жажду вызывают нейропептиды, образуемые в самой мозговой ткани. Так, повышение концентрации натрия в крови при дегидратации влечет образование в мозговой ткани натрийуретического пептида, подобного атриопептиду, также относящегося к дипсогенным факторам. Дипсогенными являются и образуемые в мозговой ткани ангиотензин-И, окситоцин и вазопрессин.
Питьевой центр может возбуждаться и после еды. Механизм жажды в этих случаях обусловлен гормональными эффектами (рис. 14.17).
Выраженное и продолжительное ограничение приема воды — водное голодание — ведет к выходу жидкости из клеток во внеклеточную среду и формированию состояния дегидратации клеток, что вызывает тяжелые расстройства, особенно со стороны центральной нервной системы, клетки которой чувствительны к сдвигам водно-солевого гомеостазиса. Как правило, вместе с водой клетки теряют и К+, что вызывает сдвиги мембранного потенциала и еще более усугубляет расстройства деятельности нервной системы и других возбудимых тканей.
Избыточные потери воды (при гипервентиляции легких, обильном потоотделении при тяжелой физической работе и высокой температуре среды) также ведут к гипертонической дегидратации, поскольку при этом потери воды намного превышают потерю электролитов (главным образом, натрия). Формирующиеся при этом интегративные механизмы регуляции водно-солевого гомеостазиса аналогичны описанным выше при дефиците приема жидкости.


Рис. 14.17. Механизм жажды после еды.


При поступлении пищи в кишечник двенадцатиперстная кишка и поджелудочная железа сек- ретируют во внутреннюю среду гормон кальцитонин. Бета-клетки поджелудочной железы, особенно после сладкой пищи, секретируют гормон амилин. Под влиянием этих гормонов активируются расположенные в межуточном мозге вокруг III мозгового желудочка структуры, получившие название циркумвентрикулярного органа, входящего в питьевой центр.

Рис. 14.18. Пороги стимуляции секреции вазопрессина и жажды как факторы регуляции осмотического гомеостазиса.


При повышении осмотического давления плазмы крови первой регуляторной приспособительной реакцией является увеличение секреции вазопрессина, а жажда появляется при более выраженном повышении осмолярности.
Таким образом, основными физиологическими механизмами, препятствующими повышению осмотического давления жидкостей внутренней средой, являются повышение секреции вазопрессина и жажда (рис. 14.18). При этом порог реакции увеличения секреции вазопрессина расположен на уровне более низких значений осмотического давления, чем порог жажды; следовательно, в процесс нормализации повышенного осмотического давления вначале вовлекается прирост секреции вазопрессина, а затем уже жажда.
<< | >>
Источник: Ткаченко Б.И. Нормальная физиология человека. 2005

Еще по теме Интегративные механизмы регуляции водно-солевого обмена и гомеостатическая функция почек:

  1. Общие принципы регуляции водно-солевого обмена
  2. ГЛАВА 14 Выделение. Функции почек. Водно-солевой обмен
  3. Водно-солевой обмен
  4. ВОДНО-СОЛЕВОЙ ОБМЕН У ВОДНЫХ ОРГАНИЗМОВ
  5. Общая характеристика функций пищеварительной системы и механизмов ее регуляции Секреторная функция
  6. Системный принцип организации механизмов регуляции физиологических функций
  7. ГЛАВА 3 Общие принципы и механизмы регуляции физиологических функций
  8. Ведение пациентов с хронической болезнью почек и мониторирование функции почек
  9. Регуляция обмена веществ и энергии
  10. Физиологические гомеостатические механизмы
  11. Гомеостатические механизмы при изоосмотической дегидратации
  12. Физико-химические гомеостатические механизмы
  13. Функции почек