7.7. Виртуальные интерфейсы


Основное содержание деятельности оператора в системе «человек — машина» составляет реализация алгоритма управления посредством логических или сенсомоторных манипуляций с рабочими органами, влияющими на поведение объекта управления.
Оптимизация алгоритмов управления — одна из основных задач классического инженерно-психологического проектирования. Интерфейс большей части техники XX века реализован на принципах концепции включения (А.А. Крылов), которая рассматривает человека — оператора в качестве звена технической системы, исполняющего функцию регулирования отдельных динамических параметров системы индуцируемых средствами отображения информации.
1
Необходимо сразу признать ряд серьёзных ограничений, генетически присущих технологиям включения. Прежде всего, это ограничения, связанные с нерешённостью проблемы формирования оптимальной информационной модели. Рост сложности технических систем ведёт к соответствующему усложнению приборной доски и органов управления, которые ставят оператора и его перцептивные системы на границу психофизиологических возможностей. Например, лётчик современного самолёта имеет в своём распоряжении более сотни непрерывно контролируемых параметров полёта, отображаемых на системах индикации и отображения информации. Все эти параметры связаны между собой в сложных, а порою и нелинейных отношениях и имеют свою динамическую историю, которую должен учитывать пилот в процессе управления. Понятно, что работать с подобными системами без серьёзного профессионального обучения практически невозможно.
Не лучше обстояли дела в области создания человеко-машинных интерфейсов и в отраслях промышленности, таких, как атомная энергетика, транспорт, судостроение, оборона. Предлагаемые здесь решения, так же как в авиации и космонавтике, имели, прежде всего, технический характер и отражали прогресс в создании новых устройств индикации, управления и методов и средств обучения. Решения имели локальный и паллиативный характер, что вело к примату технических методов проектирования над методами инженерно-психологическими. Оператор рассматривался как технический элемент системы, а процесс проектирования — как согласование физических характеристик среды управления с психофизиологическими возможностями человека. В результате на человека — оператора воздействовала качественно новая — искусственная среда. В ней перманентно нарушались процессы нормальной вне-и внутрисубъектной интеграции, возникали феномены интерференции опыта. Это стало причиной сбоев, ошибок и невысокой эффективности деятельности человека в таких технических системах.
Выходом из сложившегося положения служит внедрение новых систем интерфейса, которые можно назвать погружающими или иммерсивными интерфейсами. В них оператор погружается в формируемую технологиями виртуальной реальности машинногенерируемую трёхмерную среду, отображающую некоторый искусственный мир, деятельность в котором ведёт к решению про
1
фессиональных задач в действительном мире. В конструкции и свойствах искусственного мира максимально используется жизненный опыт субъекта.
Отметим важную особенность, связанную с присутствием в среде виртуальной реальности, — возможность извлекать полезный для практической деятельности опыт. Человек в своём контакте с виртуальным миром имеет инструменты для селекции важных аспектов моделируемой среды.
Возможности деятельности обучаемого в среде обеспечиваются интерактивностью среды — степенью, до которой пользователи могут участвовать в изменении и формировании её содержания в режиме реального времени. Интерактивность — это не просто возможность навигации в виртуальном мире, это власть пользователя по управлению изменениями этой окружающей средь». При этом виртуальный мир должен отвечать на действия пользователя. Интерактивность требует динамического моделирования и определяется технологической структурой профессиональной среды, свойствами её интерфейса. Интерактивность отражает податливость формы среды и её содержания. Степень интерактивности зависит от множества факторов. Основные факторы, определяющие степень интерактивности:
• фактор «скорость» — определяет скорость, с которой реагирует система в нормальных условиях.
Он показывает, как быстро может ассимилироваться в среду входное воздействие;
• фактор «диапазон» — включает число возможностей для действия в любое данное время;
• фактор «mapping» — отражает способность системы контролировать изменения в искусственной среде в естественной и предсказуемой манере.
Примерами интерфейса, с помощью которого реализуется интерактивность в компьютерных обучающих средах, являются клавиатура, мышь, перчатки, планшеты, системы распознавания речи, направления взгляда и связанные с ними виртуальные представления, порождаемые программными средствами.
Развитие технологий виртуальной реальности позволяет создать виртуальные среды с высокой степенью интерактив
1
ности. Именно интерактивность, отражая эффективность взаимодействия субъекта с миром, является ключевым понятием, характеризующим эффективность и возможности человеко-машинного интерфейса. Чем выше интерактивность системы, тем больше параметров моделируемого мира могут быть изменены субъектом в процессе своей деятельности.
В виртуальной реальности есть возможности воздействовать практически на все элементы моделируемого мира и осуществлять это естественным образом. При этом мир отвечает на воздействия своим изменением, доступным сенсорным системам оператора. Основное достоинство создаваемого в виртуальной среде иммерсивного интерфейса — сведение интеракций к формам, понятным сенсорным и исполнительным системам человека, к его непосредственным действиям с элементами моделируемой среды без промежуточных операций, включающих логические и языковые конструкты.
Иммерсивный интерфейс погружает человека в искусственный мир, который, в свою очередь, может быть связан с реальным физическим миром, отображая в своём предметном, пространственном и временном содержании его основные свойства. Манипуляция в иммерсивном интерфейсе естественна для человека в отличие от таковой, реализуемой в классических формах интерфейса. В последних, например, при решении задачи наведения управляемого объекта на цель в пространстве, оператор вынужден с помощью органов управления решать задачу компенсаторного слежения. Это довольно сложная сенсомоторная задача. В иммерсивном интерфейсе достаточно «взять» в виртуальном пространстве виртуальную модель объекта и «перенести» её в контур цели, тем самым совершив наведение на неё.
Трансформация реального мира в мир виртуальной реальности и свойств реального мира в свойства виртуального мира осуществляется без участия человека, что позволяет освободить последнего от сложных операций пространственно-временных преобразований. Искусственный мир может быть подстроен с помощью транслятора состояний под динамические свойства оператора, освобождая его от необходимости работать при дефиците времени. Снимаются и другие формы психологических и психофизиологических ограничений.
1
Особый вид иммерсивного интерфейса — системы с индуцированной виртуальной средой, в которых виртуальная реальность с погружённым в неё оператором копирует в реальном времени некоторую параллельно существующую реальную среду. Индуцированная виртуальная среда является носителем обратной связи, и события в ней моделируются не по абстрактному сценарию, а связаны с событиями и предметным миром реальной среды. В общую схему работы системы управления добавляется фаза реконструкции виртуальной среды. Реконструкция осуществляется на основе информации двух видов: априорной — о моделях объектов и окружающей среды, и апостериорной, поступающей из физической системы. Полностью воссоздаётся состояние объектов управляемой системы. Из индуцированной виртуальной среды оператор может извлечь всю необходимую для принятия решения информацию. Технология индуцированных виртуальных сред перспективна для использования в системах дистанционного управления, так как позволяет резко снизить требования к пропускной способности каналов связи между управляемым объектом и пунктом управления. Известны практические применения технологии индуцированных виртуальных сред при подготовке космонавтов для работы на орбитальной станции.
<< | >>
Источник: С.Ф. Сергеев. Инженерная психология и эргономика Учебное пособие. 2008

Еще по теме 7.7. Виртуальные интерфейсы:

  1. 7.5. Проектирование пользовательских интерфейсов
  2. Интуитивность интерфейса
  3. Виртуальная реальность
  4. ВИРТУАЛЬНОЕ ПРОСТРАНСТВО
  5. 7.6. Системы виртуальной реальности
  6. Глава 29 ИСТОРИЧЕСКАЯ ВИРТУАЛЬНОСТЬ
  7. Виртуальность
  8. Виртуальность
  9. Виртуальность
  10. 3.1. Виртуальность бытия всеобщности субъекта
  11. Виртуальность 1: Тиара над Россией
  12. Первая виртуальность
  13. Эпилог и виртуальность
  14. Виртуальность не случайна!
  15. Глава 21 ИСТОРИЧЕСКАЯ ВИРТУАЛЬНОСТЬ
  16. Самая хорошая виртуальность
  17. В ВИРТУАЛЬНЫЙ МИР ЗА ПОКУПКАМИ
- Cоциальная психология - Детская психология общения - Детский аутизм - История психологии - Клиническая психология - Коммуникации и общение - Логопсихология - Матметоды и моделирование в психологии - Мотивации человека - Общая психология (теория) - Педагогическая психология - Популярная психология - Практическая психология - Психические процессы - Психокоррекция - Психологический тренинг - Психологическое консультирование - Психология в образовании - Психология личности - Психология менеджмента - Психология педагогической деятельности - Психология развития и возрастная психология - Психология стресса - Психология труда - Психология управления - Психосоматика - Психотерапия - Психофизиология - Самосовершенствование - Семейная психология - Социальная психология - Специальная психология - Экстремальная психология - Юридическая психология -