§ 5. Производственные источники воспламенения и меры предупреждения их возникновения


В условиях производства источники воспламенения могут быть очень разнообразными как по природе их появления, так и по своим параметрам.
Среди возможных источников воспламенения выделим открытый огонь и раскаленные продукты горения; тепловое проявление механической энергии; тепловое, проявление электрической энергии; тепловое проявление химических реакций.

Открытый огонь и раскаленные продукты горения. Пожары и взрывы нередко возникают от постоянно действующих или внезапно появляющихся источников открытого огня и продуктов, сопровождающих процесс горения, — искр, раскаленных газов.
Открытый огонь может воспламенить почти все горючие вещества, так как температура при пламенном горении очень высокая (от 700 до 1500° С); при этом выделяется большое количество тепла и процесс горения, как правило, является продолжительным. Источники огня могут быть разнообразными — технологические нагревательные печи, реакторы огневого действия, регенераторы с выжиганием органических веществ из негорючих катализаторов, печи и установки для сжигания и утилизации отходов, факельные устройства для сжигания побочных и попутных газов, курение, использование факелов для обогрева труб и т. д. Основной мерой противопожарной защиты от стационарных источников открытого огня является их изоляция от горючих паров и газов при авариях и повреждениях. Поэтому аппараты огневого действия лучше размещать на открытых площадках с определенным противопожарным разрывом от смежных аппаратов или изолировать их, размещая обособленно в закрытых помещениях.
Наружные трубчатые огневые печи оборудуют устройством, позволяющим при авариях создать вокруг них паровую завесу, а при наличии смежных аппаратов со сжиженными газами (например, газофракционирующие установки) печи отделяют от них глухой стеной высотой 2—3 м и сверху ее прокладывают перфорированную трубу для создания паровой завесы. Для безопасного розжига печей используют электрозапальники или специальные газовые запальники. Весьма часто пожары и взрывы возникают при производстве огневых (например, сварочных) ремонтных работ из-за неподготовленности аппаратов (о чем говорилось выше) и площадок, где они расположены. Огневые ремонтные работы, кроме
наличия открытого пламени, сопровождаются разлетом
з              стороны и падением на нижележащие площадки раска- пенных частичек металла, где они могут воспламенить горючие материалы. Поэтому, кроме соответствующей подготовки аппаратов, подлежащих ремонту, подготавливается и окружающая площадка. В радиусе 10 м убирают все горючие материалы и пыль, сгораемые конструкции защищают экранами, принимают меры к предупреждению попадания искр в нижележащие этажи. Подавляющее большинство огневых работ проводят, используя специально оборудованные стационарные площадки или мастерские.
На производство огневых работ в каждом отдельном случае получается специальное разрешение администрации и санкция пожарной охраны. В необходимых случаях разрабатывают дополнительные меры обеспечения безопасности. Места производства огневых работ осматривают специалисты пожарной охраны до начала и после окончания работы. При необходимости на время производства работ устанавливают пожарный пост с соответствующей пожарной техникой.
Для курения на территории предприятия и в цехах оборудуют специальные помещения или выделяют соответствующие площадки; для отогрева замерзших труб используют горячую воду, водяной пар или индукционные грелки.
Искры — раскаленные твердые частицы, не полностью сгоревшего топлива. Температура таких искр чаще всего находится в пределах 700—900° С. При попадании в воздух искра сгорает сравнительно медленно, так как на ее поверхности частично адсорбируется двуокись углерода и другие продукты горения.
Снижение пожарной опасности от действия искр достигается устранением причин искрообразования, а при необходимости — улавливанием или гашением искр.
Улавливание и гашение искр при работе топок и двигателей внутреннего сгорания достигается использованием искроулавливателей и искрогасителей. Конструкции искроулавливателей очень разнообразны. Устройства для улавливания и гашения искр основаны на использовании силы тяжести (осадительные камеры), силы инерции (камеры с перегородками, насадками, сетками, жа- люзийные устройства), центробежной силы (циклонные

улавливатели, турбинно-вихревые), сил электрического притяжения (электрофильтры), охлаждения продуктов сгорания водой (водяные завесы, улавливание поверхностью воды), охлаждения и разбавления газов водяными парами и др. В некоторых случаях устанавливают





/ — топка; 2 — осадительная камера; 3 — циклонный искроулавливатель; 4 — дожигательная насадка
последовательно несколько систем искрогашения, как показано на рис. 3.7.
Тепловое проявление механической энергии. Опасное в пожарном отношении превращение механической энергии в теплоту имеет место при ударах твердых тел с образованием искр, трении тел при взаимном перемещении относительно друг друга, адиабатическом сжатии газов и т. д.
Искры удара и трения образуются при достаточно сильном ударе или интенсивном истирании металлов и других твердых тел. Высокая температура искр трения определяется не только качеством металла, но и окислением его кислородом воздуха. Температура искр нелегированных малоуглеродистых сталей превышает иногда

1500° С. Изменение температуры искр удара и трения в зависимости от материала соударяющихся тел и прилагаемого усилия показано на графике рис. 3.8. Несмотря на высокую температуру, искры удара и трения имеют небольшой запас тепла в связи с незначительностью их массы. Многочисленными опытами установлено, что

Рис. 3.8. Зависимость температуры искр удара и трения от давления соударяемых тел


наиболее чувствительными к искрам удара и трения являются ацетилен, этилен, сероуглерод, окись углерода, водород. Вещества, имеющие большой период индукции и требующие для воспламенения значительного количества тепла (метан, естественный газ, аммиак, аэрозоли и т. д.), искрами удара и трения не поджигаются.
Искры, упавшие на осевшую пыль и волокнистые материалы, создают очаги тления, которые могут вызвать пожар или взрыв. Большой поджигательной способностью обладают искры, получающиеся при ударах алюминиевых предметов по окисленной поверхности стальных деталей. Предупреждение взрывов и пожаров от искр удара и трения достигается применением неискрящих инструментов для повседневного использования и при аварийных работах во взрывоопасных цехах; маг-
нитных сепараторов и камнеулавливателей на линиях" подачи сырья в машины ударного действия, мельницы и т. п. аппараты; выполнением деталей машин, которые могут соударяться друг с другом, из искробезопасных металлов или путем строгой регулировки величины зазора между ними.
Неискрящими считаются инструменты, выполненные из фосфористой бронзы, меди, алюминиевых сплавов АКМ-5-2 и Д-16, легированные стали, содержащие 6— 8% кремния и 2—5% титана и т. п. He рекомендуется применять обмедненный инструмент. Во всех случаях, где это возможно, операции ударного действия следует заменять безударными*. При использовании стальных ударных инструментов во взрывоопасных средах место работы усиленно вентилируют, соударяющиеся поверхности инструмента смазывают консистентными смазками.
Разогрев тел от трения при взаимном перемещении зависит от состояния поверхностей трущихся тел, качества их смазки, давления тел друг на друга и условий отвода тепла в окружающую среду.
При нормальном состоянии и правильной эксплуатации трущихся пар избыток выделяющегося тепла своевременно отводится в окружающую среду, обеспечивая поддержание температуры на заданном уровне, т.
е., если Qtp= QnoT, то /раб = Const. Нарушение этого равенства приведет к увеличению температуры трущихся тел. По этой причине опасные перегревы имеют место в подшипниках машин и аппаратов, при буксовании транспортерных лент и приводных ремней, при наматывании волокнистых материалов на вращающиеся валы, механической обработке твердых горючих веществ и т. д.
Чтобы уменьшить возможность перегрева, вместо подшипников скольжения для высокооборотных и сильно нагруженных валов применяют подшипники качения.
Большое значение имеет систематическая смазка подшипников (особенно подшипников скольжения). Для нормальной смазки подшипника используют тот сорт масла, который принят с учетом нагрузки и числа оборотов вала. Если естественное охлаждение недостаточно для отвода избыточного тепла, устраивают принудительное охлаждение подшипника проточной водой или циркулирующим маслом, обеспечивают контроль за темпе-

ратурой подшипников и применяемой жидкости для их охлаждения. За состоянием подшипников систематически наблюдают, очищают от пыли и грязи, не допускают перегрузки, вибраций, перекосов и нагрева сверх установленных температур.
He следует допускать“перегрузки транспортеров, Защемления ленты, ослабления натяжения ремня, ленты. Применяют устройства, автоматически сигнализирующие о работе с перегрузкой. Вместо плоскоременных передач применяют клиноременные, которые практически исключают буксование.
От попадания волокон в зазоры между вращающимися и неподвижными частями машины, постепенного уплотнения волокнистой массы и ее трения о стенки машины (на текстильных фабриках, льно- и пенько-джуто- вых заводах, в сушильных цехах заводов химических волокон и др.) уменьшают зазоры между цапфами валов и подшипниками, применяют втулки, кожухи, щиткЦ и другие противонамоточные устройства для защиты валов от соприкосновения с волокнистыми материалами. В некоторых случаях устанавливают противонамоточные ножи и т. п.
Разогрев горючих газов и воздуха при их сжатии в компрессорах. Повышение температуры газа при адиабатическом сжатии определяется уравнением



где Tll1 Tk — температура газа до и после сжатия, °К; Pm Pk — начальное и конечное давления, кГ/см2\ k — показатель адиабаты, для воздуха ?=1,41.
Температура газа в цилиндрах компрессора при нормальной степени сжатия не превышает 140—160° С. Так как конечная температура газа при сжатии зависит от степени сжатия, а также от величины начальной температуры газа, то во избежание чрезмерного перегрева при сжатии до высоких давлений газ сжимают постепенно в многоступенчатых компрессорах и охлаждают после каждой ступени сжатия в межступенчатых холодильниках. Чтобы избежать повреждений компрессора, контролируют температуру и давление газа.
Повышение температуры при сжатии воздуха нередко приводит к взрывам компрессоров. Взрывоопасные концентрации образуются в результате испарения и разложения смазочного масла в условиях повышенных температур. Источниками воспламенения являются очаги самовозгорания продуктов разложения масла, отлагающихся в нагнетательном воздуховоде и ресивере. Установлено, что на каждые IO0C повышения температуры в цилиндрах компрессора процессы окисления ускоряются в 2—3 раза. Естественно, что взрывы, как правило, происходят не в цилиндрах компрессоров, а в нагнетательных воздуховодах и сопровождаются горением масляного конденсата и продуктов разложения масла, скапливающихся на внутренней поверхности воздуховодов. Во избежание взрывов воздушных компрессоров, кроме контроля за температурой и давлением воздуха, устанавливают и строго выдерживают оптимальные нормы подачи смазочного масла, систематически очищают нагнетательные воздуховоды и ресиверы от горючих отложений.
Тепловое проявление электрической энергии. Тепловое действие электрического тока может проявиться в виде электрических искр и дуг при коротком замыкании; чрезмерного перегрева двигателей, машин, контактов и отдельных участков электрических сетей при перегрузках и переходных сопротивлениях; перегрева в результате проявления вихревых токов индукции и самоиндукции; при искровых разрядах статического электричества и разрядах атмосферного электричества.
При оценке возможности возникновения пожаров от электрооборудования необходимо учитывать наличие, состояние и соответствие имеющейся защиты от воздействия окружающей среды, коротких замыканий, перегрузок, переходных сопротивлений, разрядов статического и атмосферного электричества.
Тепловое проявление химических реакций. Химические реакции, протекающие с выделением значительного количества тепла, таят потенциальную возможность возникновения пожара, взрыва, так как при этом возможен разогрев реагирующих или рядом находящихся горючих веществ до температуры их самовоспламенения.
Химические вещества по опасности тепловых проявлений экзотермических реакций разделяют на следующие группы (подробнее об этом сказано в гл. I).
а.              Вещества, воспламеняющиеся при соприкосновении с воздухом, т. е. имеющие температуру самовоспламенения ниже температуры окружающей среды (например, алюминийорганические соединения) или нагретые выше температуры их самовоспламенения.
б.              Вещества, самовозгорающиеся на воздухе, — растительные масла и животные жиры, каменный и древесный уголь, сернистые соединения железа, сажа, порошкообразные алюминий, цинк, титан, магний, торф, отходы нитроглифталевых лаков и т. д.
Самовозгорание веществ предупреждают уменьшением поверхности окисления, улучшением условий отвода тепла в окружающую среду, снижением начальной температуры среды, использованием ингибиторов процессов самовозгорания, изоляцией веществ от соприкосновения с воздухом (хранение и обработка под защитой негорючих газов, защита поверхности измельченных веществ пленкой жира и т. д.).
в.              Вещества, воспламеняющиеся при взаимодействии с водой, — щелочные металлы (Na, К, Li), карбид кальция, негашеная известь, порошок и стружка магния, титана, алюминийорганические соединения (триэтилалюминий, триизобутил алюминий, диэтил алюминийхлорид и т. п.). Многие из этой группы веществ при взаимодействии с водой образуют горючие газы (водород, ацетилен), которые в процессе реакции могут воспламеняться, а некоторые из них (например, алюминийорганические соединения) при контакте с водой дают взрыв. Естественно, что такие вещества хранят и используют, защищая от соприкосновения с ними производственной, атмосферной и почвенной воды.
г.              Вещества, воспламеняющиеся при контакте друг с другом, — это в основном окислители, способные в определенных условиях воспламенять горючие вещества. Реакциям взаимодействия окислителей с горючими веществами способствуют измельченность веществ, повышенная температура и наличие инициаторов процесса. В некоторых случаях реакции носят характер взрыва. Окислители нельзя хранить совместно с горючими веществами, нельзя допускать какой-либо взаимоконтакт между ними, если это не обусловлено характером технологического процесса.

д.              Вещества, способные разлагаться с воспламенением или взрывом при нагревании, ударе, сжатии и т. п. воздействиях. К ним относятся взрывчатые вещества, селитры, перекиси, гидроперекиси, ацетилен, порофор ЧХЗ-57 (азодинитрилизомасляной кислоты) и др. Такие вещества в процессе хранения и использования предохраняют от опасных температур и опасных механических воздействий.
Химические вещества перечисленных выше групп нельзя хранить совместно, а также вместе с другими горючими веществами и материалами.
<< | >>
Источник: М. В. Алексеев, П. Г. Демидов, М. Я. Ронтман, II. А. Тарасов-Агалаков. Основы пожарной безопасности. Учеб. пособие для высших учебных заведений. 1971

Еще по теме § 5. Производственные источники воспламенения и меры предупреждения их возникновения:

  1. §2. Меры административного предупреждения
  2. МЕРЫ ПРЕДУПРЕЖДЕНИЯ РОЖДЕНИИ'
  3. Глава 8 МЕРЫ ПРЕДУПРЕЖДЕНИЯ РОЖДЕНИИ'
  4. Племена Закавказья в У—II тысячелетиях до н. э. Возникновение государства Урарту Природные условия, источники и историография
  5. 42. Меры пресечения и предупредительные меры в административном принуждении.
  6. Оценка токсичности транспортных средств, оснащенных двигателем с воспламенением от сжатия Токсичность городскоготранспорта
  7. Кархалев Д.Н.. Гражданско-правовые меры защиты и меры ответственности: Учебное пособие. - Уфа: РИО БашГУ, - 148с., 2004
  8. 192. Право на обеспечение безопасности — современный и общий источники обязательства возмещения. Деление этого раздела по признаку основания возникновения обязательства.
  9. Проблема возникновения науки и влияние представлений о науке на решение вопроса о ее возникновении
  10. 3.1. Правовое регулирование предупреждения аварий
  11. § 3. Производственные кооперативы
  12. ЗНАЧЕНИЕ КОЭФФИЦИЕНТА f В ЗАВИСИМОСТИ ОТ ВЫСОТЫ ИСТОЧНИКА ЗАГРЯЗНЕНИЯ РАЗНОСТИ ТЕМПЕРАТУР В УСТЬЕ ИСТОЧНИКА И ОКРУЖАЮЩЕЙ АТМОСФЕРЫ НА УРОВНЕ УСТЬЯ (u= 3 м/с)
  13. Производственный микроклимат
  14. § II. Производственные кооперативы
  15. § 4. Производственный кооператив (артель)
  16. Производственный экологический мониторинг
  17. Производственные отношения
  18. ОСНОВНЫЕ ПРИНЦИПЫ ПРЕДУПРЕЖДЕНИЯ ЧРЕЗВЫЧАЙНЫХ СИТУАЦИЙ ПРИРОДНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА
  19. IV.6. ДЕЯТЕЛЬНОСТЬ ОРГАНОВ ПРОКУРАТУРЫ ПО ПРЕДУПРЕЖДЕНИЮ ПРЕСТУПНОСТИ?
  20. Основные мероприятия по предупреждению экологических чрезвычайных ситуаций