ГАЗООБМЕН В ВОДНОЙ СРЕДЕ


Первичноводные животные и погруженные растения используют для дыхания кислород, растворенный в воде, извлекая его либо всей поверхностью тела, либо специальными органами дыхания. Растворимость кислорода в воде невелика: при 15°С и давлении сухого газа над водной поверхностью в I атм (101,3 к Па) в I л воды растворяется около 34 мл Oj.
Практически содержание кислорода в природных водоемах существенно ниже и редко превышает 10—11 мл/л. На растворимость
Исключение составляют насекомые, у которых воздух по трахеям транспортируется непосредственно к тканям. Циркуляторная система в этом случае не песет дыхательной функции.
кислорода влияет величина его парциального давления в воздухе, а также температура и количество растворенных в воде электролитов (табл. 6.1).
Таблица 6.1. Количество кислорода, растворяющегося а воде при разной температуре, мл/л (по A. Krogh, 1941)

Температура, град

Пресная вода

Морская вода

О

10,29

7,97

10

8,02

6,35

15

7,22

5,79

20

6,57

5,31

30

5,57

4,46


На содержание кислорода в воде влияет и ряд экологических факторов. Так, перемешивание воды (шторм, волнение, быстрое течение с порогами и водопадами) повышает насыщение воды кислородом, увеличивая поверхность ее контакта с атмосферным воздухом. В штилевую погоду в стоячих замкнутых водоемах растворение кислорода в воде замедлено. Зеленые растения способствуют увеличению содержания кислорода в воде, а накопление мертвых растительных остатков, ила обедняет воду кислородом через связывание его при разложении органических веществ. Это особенно выражено при высокой температуре. В этих условиях процессы разложения ускоряются, а растворимость кислорода падает. В зимний период, когда водоемы покрыты льдом, содержание кислорода в воде уменьшается, особенно если в ней взвешено большое количество детрита. В результате могут возникать так называемые заморы — массовая гибель рыбы от нехватки кислорода.
Суммарное воздействие многих и разнообразных факторов на процесс растворения кислорода приводит к тому, что его содержание в естественных водоемах не только невелико, но и весьма изменчиво, что создает сложную экологическую обстановку для реализации процессов газообмена у гидробионтов.
Принцип водного дыхания. Относительно небольшое количество кислорода, растворенного в воде, предъявляет определенные требования к конструкции органов внешнего дыхания. Эти органы должны быть представлены структурами с большой поверхностью, что морфологически чаще выражается в виде сложноветвящихся, складчатых, тонких эпителиальных образований. Дыхательная поверхность во всей полноте должна контактировать с окружаюшей водой. Именно эти две позиции реализованы у ряда беспозвоночных животных, дыхательные органы (жабры) которых свободно контактируют с водой по всей поверхности.              .
Эволюция, направленная на повышение уровня метаболизма, свя- 1ана с активизацией газообмена. В простейшем случае это выражается н использовании течений и других перемещений водной массы, что

ускоряет газообмен. В более сложных вариантах возникают специальные приспособления, активно прогоняющие воду через дыхательный аппарат (некоторые моллюски и др.). В наиболее выраженной форме этот принцип реализован у первичноводных позвоночных жинотных.
У всех рыб жаберный аппарат устроен так, что вода активно прокачивается сквозь систему многочисленных жаберных лепестков, на поверхности которых происходит газообмен. У высших костных рыб движения ротового и жаберного аппаратов сочетают нагнетательный (ротовая полость) и всасывающий (околожаберная полость) принципы, что обеспечивает интенсивное продвижение воды через жабры. У акуловых рыб из-за отсутствия жаберной крышки этот механизм выражен слабее.
При быстром плавании, сопряженном с большими затратами энергии, для прокачивания воды через жабры используется самодвижение: рыба плывет с открытым ртом, и вода проталкивается через жабры тем интенсивнее, чем выше скорость движения. Такой же «напорный» тип жаберной вентиляции используют и хорошие пловцы из костных рыб
(например, тунцы). Видимо, при большой скорости такой тип вентиляции оказывается более экономичным. На примере полосатого окуня Morone saxatilis и луфаря Po- matomus saltatrix показано, что переход на напорную вентиляцию при форсированном движении дает энергетический выигрыш порядка 30 %.
Во всех описанных случаях вода проходит через жабры только в одном направлении; движений типа вдох — выдох у водных позвоночных нет. Это связано с необходимостью непрерывного извлечения кислорода из воды; «холостые» (типа вьщоха) фазы резко снизили бы эффективность дыхания.
Извлечение кислорода из воды в жабрах рыб усиливается еще и вследствие ис-


Рис. 6.2. Эффективность обменных процессов между жидкостями, движущимися в одном и том же (А) и в противоположных направлениях (Б) (по R. Hill1 1976)


пользования принципа противотока: движение крови в капиллярах вторичных жаберных пластинок ориентировано так, что оказывается противоположным току воды через систему этих пластинок (рис. 6.1). Благодаря противоточной системе на протяжении всей длины жаберной пластинки сохраняется градиент концентрации Ch и COj в крови и воде, в силу чего процесс диффузии идет непрерывно, и отходящая от жабр кровь имеет почти тот же уровень насыщения кислородом, что и поступающая в жабры вода (рис. 6.2). Математический анализ теоретически возможных принципов газообмена показал, что именно противоточная система обеспечивает наибольшую эффективность утилизации кислорода (J. Piiper, P. Sheid, 1972).
Используя рассмотренный принцип строения и функционирования системы внешнего дыхания, костистые рыбы могут извлекать до 85 % кислорода, растворенного в омывающей жабры воде. Велика у них и степень утилизации кислорода, поступившего в кровь: она в 2,5—3 раза выше, чем у млекопитающих. У хрящевых рыб эффективность извлечения кислорода из воды составляет 70—77 % (при более быстром протоке — 40—50 %), что вполне сопоставимо с дыханием костных рыб. У миног, отличающихся грубой складчатостью жаберного эпителия и широким использованием дыхательных движений типа вдох — выдох, эффективность дыхания составляет 10—25%.
Адаптации к изменениям содержания кислорода в воде. Особенности морфологического строения жабр довольно широко варьируют у разных видов рыб. Отличия могут касаться числа и величины жаберных лепестков, количества вторичных жаберных пластинок, а соответственно общей дыхательной поверхности — важнейшего параметра, определяющего эффективность дыхания. Эти показатели хорошо коррелируют с экологическими особенностями разных видов. В частности, виды, отличающиеся по скорости плавания, а значит, и по потребности в кислороде, характеризуются разной выраженностью структур, обеспечивающих дыхание. Так, у быстро плавающей макрели суммарная жаберная поверхность в пять с лишним раз больше, чем у рыбы-удилыцика, обитающего в придонных слоях воды и почти не совершающего активных движений (рис. 6.3). Дыхательная поверхность жабр трески и щуки примерно в 1,5 раза больше, чем у малоподвижной камбалы.
Подобная же закономерность отмечается и в связи с кислородным режимом водоемов: у видов, обитающих в условиях дефицита кислорода, отмечается удлинение жаберных лепестков, увеличение числа вторичных жаберных пластинок на них и, как результат, возрастание суммарной дыхательной поверхности. Например, у циркумполярного вида Scopelarchusguentheri особи из северной части Индийского океана, где концентрация кислорода в подповерхностных водах понижена, обладают более длинными жаберными лепестками и большим числом вторичных жаберных пластинок.
Аналогичная закономерность прослеживается и у других животных. Так, у личинок эфемерид, обитающих в различных экологических условиях, относительная площадь жабр хорошо коррелирует со степенью выраженности кислородного дефицита (табл. 6.2).
Таблица 6.2. Относительная поверхность жабр у личинок эфемерид с разной экологией, см2/г (по Д.Н. Кашкарову, 1945)

Ннмфы

Поверхность
жабр

02, мл/л

Течение,
фут/с

Местообитание

Ecdiurus ramaleyi

28,8

5,4

0

Под камнями, озера

Siphlurus occidentalis

28,4

5,3

0

Илистое дно озера

Calliaetus Juscus

20,4

6,6

0

Растительность озер

Baetis tricaudatus

,7'[XX].

7,1

0—5

Ручьи и берега озер

Iron sp.

24,0*

7.3

0
1

Поток

Baetis bicaudatus
/>10,3
7,3

6—10

То же

Amelotus velox

9,3

7,28

0—1

Ясное озеро и тихий ручей

* Часть жабр функционирует в качестве присоски.



Рис. 6.3. Отличия в величине поверхности жаберного эпителия у разных видов рыб (по К. Шмидт-Ниельсену. 1982)


Цифрами обозначена плошаль жаберной поверхности (условные единицы на I г массы тела)

реагируют компенсаторным увеличением частоты дыхательных движении и (или) увеличением объема воды, пропускаемой через жаберный аппарат в единицу времени. При искусственной гипероксии дыхание, напротив, замедляется. Такая реакция имеет довольно общий характер. Она отмечена у разных видов костных и хрящевых рыб, равно как и у круглоротых.
Практически у всех крутлоротых и рыб 'имеется «морфофункциональный резерв» повышения мощности дыхания в виде некоторых «избыточных» газообменных структур. Экспериментально установлено, что в нормальных условиях у рыб функционирует не более 60 % жаберных лепестков. Остальные включаются лишь в условиях наступающей гипоксии или при возрастании потребности в кислороде, например при повышении скорости плавания.
Регуляция дыхания у рыб осуществляется на уровне продолговатого мозга. В расположенном здесь дыхательном центре формируется автономный ритм дыхательных движений, на который накладываются стимулы, вызванные прямым действием динамики концентрации Ог и COj в крови. Изменения содержания кислорода в среде действует по этим же каналам, т. е. через динамику напряжения его в крови.
Отмечено, что адаптивная гипервентиляция жабр часто сопровождается замедлением сердечного ритма — брадикардия. Это, видимо, отражает некоторое снижение уровня метаболизма, а соответственно и потребности в кислороде. Можно полагать, что «борьба за кислород» в условиях его временной недостаточности идет двумя путями: повышением интенсивности работы газообменного аппарата и одновременно некоторым снижением затрат кислорода в организме.
Существенные адаптации к колебаниям содержания кислорода в воде обнаруживаются в системе транспортной функции крови. Способность крови к переносу кислорода лишь в малой степени обеспечивается растворением его в плазме. В подавляющем большинстве случаев в транспорте кислорода принимают участие дыхательные пигменты крови, активно связывающие кислород непрочными связями при внешнем газообмене и отдающие его в тканях, где напряжение этого газа невелико. Участие дыхательных пигментов резко повышает общую кислородную емкость крови (рис. 6.4). Дыхательные пигменты различны у разных таксонов животного царства (табл. 6.3).

Рыбам, как и всем позвоночным, в качестве дыхательного пигмента свойствен гемоглобин. Известно лишь небольшое число видов (преимущественно антарктические Chaenichthydae), кровь которых полностью лишена гемоглобина и весь кислород транспортируется только в плазме. Исследование одного из таких видов (ледяная рыба Chaeno- cephala aceratus) показало, что эти рыбы обитают в хорошо аэрированных холодных водах, ведут довольно пассивный образ жизни и обладают низким уровнем обмена веществ. Для них характерна обильная васкуляризация жабр, повышенная роль кожного газообмена и увеличенная скорость кровотока в жаберных сосудах. При всем этом ледяная рыба, как и другие безгемоглобиновые формы, весьма неустойчива к гипоксии.
Таблица 6.3. Распространенные дыхательные пигменты и примеры животных, у которых они имеются (по К. Шмвдт-Ниельсен, 1982)

Пигмент

Характеристика

Молекулярная масса, IO4

У каких животных встречается

Гемоцианин
Гемоэритрин
Хлорокру-
орин
Гемоглобин

Медьсодержащий белок, находится в растворе
Железосодержащий белок непор- фириновой структуры, всегда находится внутри клеток
Железосодержащий белок, находится в растворе
Железосодержащий белок, находится в растворе или внутри клеток; наиболее широко распространенный пигмент

30—900
10.8
275
1,7—300

Моллюски (хитоны, головоногие, переднежаберные, легочные брюхоногие, но не пластинчатожаберные).
Членистоногие (крабы, омары). Паукообразные (Limulus, Euscorpius)
Сипункулиды (все исследованные виды). Полихеггы (Magelona). Приапули- ды (Halicriptis, Priapulus). Плеченогие (Lingula)
4 семейства полихет (Sabellidae, Serpulidae, Crorhaemidae, Amphateridae). Одна простетическая группа имеется у морских звезд (Luidia, Astropecten) Позвоночные (почти все, за исключением лептоцефалид—личинки утрей и некоторых антарктических рыб Cha- enichthus). Иглокожие (голотурии). Моллюски (Planerbis, Tivela). Членистоногие (насекомые — Chironomus, Gastrophilus, ракообразные — Daphnia, Artemia). Кольчатые черви (Lumbricus, Tubifex, Arenicola, Spirorbis у некоторых видов имеется гемоглобин, у некоторых — хлорокруорин, другие не имеют в крови пигментов; SerpuIa гемоглобин и хлорокруорин). Нематоды (Ascaris). Плоские черви (паразитические сосальщики). Простейшие (Paramecium, Tetrahymena). Растения (дрожжи, Neurospora, корневые клубеньки бобовых растений — клевер, люцерна)



Способность крови рыб транспортировать кислород в связанном с гемоглобином состоянии зависит от общего количества гемоглобина (соответственно и от числа эритроцитов), а также от его химических свойств, определяющих способность пигмента к насыщению кислородом при определенном парциальном давлении последнего.
Кривая кислородного равновесия крови, показывающая степень насыщения гемоглобина кислородом при различных его парциальных давлениях, у наземных позвоночных обычно имеет сигмоидную форму, а у рыб — чаше гиперболическую (рис. 6.5). Это свидетельствует о большем сродстве гемоглобина рыб к кислороду, что вполне соответствует его низкой концентрации в водной среде. На этой кривой в качестве стандартных параметров приняты две точки: зарядное напряжение — парциальное давление кислорода (в миллиметрах ртутного столба[XXI]), при котором гемоглобин насыщается на 100 %[XXII], и разрядное напряжение (или напряжение полунасыщения), при котором оксигемоглобин отдает 50 % кислорода тканям.
При повышении сродства гемоглобина к кислороду кривая кислородного равновесия сдвигается влево — насыщение происходит при меньших значениях РСЬ. Этот процесс может зависеть от условий, в которых происходит газообмен, в частности от температуры. Большое значение имеет pH крови: при повышении кислотности кривая сдвигается вправо — эффект Бора. Этот эффект имеет значение при газообмене в тканях: именно там в кровь поступает большое количество СО2, pH понижается и гемоглобин начинает легче отдавать кислород.
Гематологические особенности рыб довольно отчетливо связаны с экологией отдельных видов, отражая приспособление к кислородному режиму в местах обитания. В частности, у рыб, живущих в дефицитных по кислороду водоемах, сродство гемоглобина к кислороду, как правило, выше, чем у обитателей быстротекучих вод, или неглубоководных морских рыб, которые не лимитированы количеством кислорода в их естественных местообитаниях (рис. 6.5, табл. 6.4).

Таблица 6.4. 3«рядное (Р95) и разрядное (PsO) напряжение кислорода у экологически отличающихся видов рыб, кПа (по Н.С. Строганову, 1962)

Вил

Температура, град. С

Р95

Pso

Щука

15—17

1,3

0,3-0,4

Карп

15—17

1,3

0,3-().4

Угорь

15—17

1,3

0.3-0,4

Лещ

16

3,0

0,6

Камбала

16

5,2

1,3

Форель

15—17

9,1

1,5-2,0

Треска

15

9,1

2,4

Скумбрия

20

13,3

2,3


Экология и физиология дыхания тесно взаимосвязаны. Как правило, обитатели хорошо аэрированных водоемов высокоподвижны. При этом оправдано свойственное им более низкое сродство гемоглобина к кислороду: при этом кислород легче отдается тканям. Рыбы из водоемов с низким содержанием кислорода в воде, напротив, обычно ведут малоподвижный образ жизни, чем обеспечивается меньшая потребность в кислороде. Таким видам свойственно более высокое сродство гемоглобина к кислороду, позволяющее извлекать его из воды при малом напряжении; у них же обычно хорошо выражен )ффект Бора, облегчающий тканевой газообмен.
Экологическая значимость динамики дыхательных свойств крови прослеживается и в пределах одного вида. Было показано, что личинки миног Lampetra Jluviatilis отличаются более высоким сродством гемоглобина к кислороду (Pso = 0,25 кПа), чем взрослые формы (Pso = =1,43 кПа). Это объясняется тем, что личинки обитают в грунте в условиях затрудненного доступа кислорода.
В реактивных ответах на гипоксию большую роль играет динамика содержания гемоглобина в крови. Показано, что у дафнии концентрация гемоглобина колеблется в пределах 60—150 мг/г, причем наименьшее количество гемоглобина свойственно рачкам, регулярно мигрирующим в поверхностные, богатые кислородом воды (S. Landon, R. Stasiak, 1983). У рыб адаптации такого рода связаны с изменениями числа эритроцитов: при появлении кислородной недостаточности количество их в крови возрастает. Это увеличивает общую кислородную емкость крови, компенсируя замедление скорости диффузии при низкой концентрации кислорода в воде. Показано, что при этом рыбы, испытывающие в естественных условиях дефицит кислорода, резче реагируют на возникновение гипоксии (табл. 6.5).
Воздушное дыхание рыб. В условиях высоковероятного или регулярного (например, сезонного) дефицита кислорода в водоемах у многих видов рыб эволюционно сформировались приспособления к использованию атмосферного воздуха, как дополнительного (а в экстремальных случаях и единственного) источника кислорода. Элементы воздушного дыхания наиболее характерны для обитателей пресных вод

или эстуариев тропической зоны. Донные отложения таких водоемов богаты органическими веществами; разложение их при высокой температуре усиливает недостаток растворенного в воде кислорода.
Таблипа 6.5. Динамика числа эритроцитов в норме и при гипоксии у двух видов бычков рода Cottus (по J. Starnacb, 1970)

Вид

Содержание Oi в

Число эритроцитов в I мм1


естественных условиях

Норма (8,35 мЮг/л)

Гипоксия (2,68 mtOj/л)

С. poecilopus

Нормальное

I 930 000

2 250 000

С. gobio

Пониженное

I 540 000

3 110 000
Морфологическая база воздушного дыхания различна, но имеется одно общее свойство, объединяющее все морфологическое разнообразие органов воздушного дыхания: они формируются там, ще в связи с теми или иными функциями развилась система многочисленных кровеносных капилляров.
Поэтому у рыб для воздушного дыхания в ряде случаев могут использоваться и жабры; задача состоит в том, чтобы предохранить их поверхность от высыхания. Это связано с изменением типа дыхательных движений. Так, обитающая в пересыхающих болотах Южной Америки рыба Symbranchus тагто- ratus периодически наполняет околожаберное пространство воздухом, задерживая его там на Рис. 6.6 Органы дополнительного воздушного дыха- 12—15 МИН. За ЭТО время ния у рыб. Варианты васкуляризации околожабериой извлекается ОКОЛО 50 % полости: А — рыба-ползун Anabas-, Б — индийский содержащегося В воздухе сом Saccobranckus; В - африканский шагающий сом ^lcjlopofla В газообмене Clanas (по J. Young, 1981)



«лабиринтов». Слизистая этих полостей и складок снабжена густой сетью кровеносных капилляров (рис. 6.6). Показано, что имеющий такие органы дыхания шагающий сом Clarias может дышать, одновременно используя кислород из воды и из воздуха; при этом из воздуха утилизируется примерно 52 % кислорода, a COj выводится через жабры и кожу. Рыба-ползун Anabas при таком же типе дыхательных органов при 25°С до 80 % кислорода получает из воздуха; если закрыть доступ к нему, уровень обмена у рыбы понижается в пять раз.
У ряда видов рыб газообмен с воздухом происходит в различных отделах пищеварительного тракта (рис. 6.7). У вьюна Misgumusfossils и южноамериканского сомика Hoplostemum thoracatum эта функция осуществляется в заднем отделе кишечника, где слизистая имеет гладкую поверхность, утонченный эпителий, пронизанный густой сетью капилляров. Многие виды используют для воздушного дыхания плавательный пузырь, в стенке которого располагается хорошо сформированная

газообменная система сосудов, исходно связанная с регуляцией гидростатической функции, но не менее эффективная при воздушном дыхании.
Классические примеры такого типа газообмена — относящиеся к костным ганоидам ильная рыба Amia clava и панцирная щука Lepidosteш osseus. У последнего вида путем воздушного дыхания в организм поступает 70—80 % всего кислорода. У амии соотношение водного и воздушного дыхания зависит от температуры: при 10°С кислород извлекается только из воды, при повышении температуры включается воздушное дыхание, и относительная роль его постепенно возрастает, при 30° этим путем обеспечивается около 75 % всего потребляемого кислорода; СОг и у этих рыб выводится через жабры.
Хорошо известен своим «наземным» образом жизни илистый прыгун Periophthalmus, обитающий в болотистых эстуариях тропической ' зоны. Эта рыба подолгу находится вне воды, передвигаясь по суше с помощью грудных плавников. Органом воздушного дыхания у нее служит кожа. Эффективность такого способа дыхания столь велика, что при принудительном погружении в воду на длительное время у рыбы появляются признаки асфиксии. Преимущественно через кожу осуществляется дыхание воздухом у обыкновенного угря, способного к длительным перемещениям по суше из одного водоема в другой. Впрочем, у этого вида в воздушном газообмене принимают участие также и жабры, а на начальном этапе адаптации используется запас воздуха в плавательном пузыре. Относительная роль кожи в дыхании резко возрастает при выходе на сушу: в воде через кожу поступает лишь 10 % кислорода, а в воздухе —до 66 % его общего объема.
У нескольких видов рыб на базе выростов кишечника сформировались настоящие легкие, обеспеченные специальным кровоснабжением, идущим от первой пары жаберных артерий (первая стадия формирования малого круга кровообращения). Эго африканский многопер Polypterus и двоякодышащие рыбы Dipnoi. Многопер обитает в мелких болотистых водоемах тропической Африки. При дефиците кислорода рыбы регулярно всплывают к поверхности и захватывают воздух через брызгальца. При достаточном содержании растворенного кислорода многопер пользуется исключительно жабрами.
Двоякодышащие рыбы очень неоднородны по экологии, а соответственно и по роли воздушного газообмена в общем дыхании. Австралийский Neoceratodesforsteri обитает в медленно текучих реках и других проточных водоемах, почти не испытывая дефицита кислорода. Дыхание у этого вида совершается практически только через жабры. При искусственно созданном исключительно воздушном дыхании насыщение крови кислородом падает до 15—20 %. Этот вид, практически не подверженный естественной гипоксии, использует воздушное дыхание лишь как дополнительное при повышенной активности.
Африканские Protipterus и американский Lepidisiren paradoxa заселяют стоячие водоемы, подверженные регулярному пересыханию. Эти

виды регулярно сталкиваются с недостатком кислорода в воде, а во время засухи вынуждены полностью переходить на воздушное дыхание. Это сопровождается впадением в состояние оцепенения, при котором рыба, заключенная в «кокон» из подсохшей грязи и слизи, резко снижает уровень обмена. Роль воздушного дыхания у этих видов существенна. В эксперименте при содержании в воде с доступом к воздуху и протоп- терус и лепидосирен большую часть поступающего в организм кислорода получали легочным путем, а СО2 выводили как через легкие, так и через жабры (рис. 6.8). При искусственном чисто воздушном дыхании насыщение артериальной крови кислородом достигало 90 %. Показано, что интенсификация воздушного дыхания стимулируется снижением концентрации кислорода в воде. Во время «спячки» усиливается и транспортная функция крови. Опыты с Protopterusaethiopicus и P. amphibius показали, что в состоянии оцепенения у рыб почти вдвое увеличивается число эритроцитов, содержание гемоглобина и сродство его к кислороду. В результате примерно на 50 % возрастает общая кислородная емкость крови.
<< | >>
Источник: Шилов И.А.. Экология: Учеб. для биол. и мед. спец. вузов. 1998

Еще по теме ГАЗООБМЕН В ВОДНОЙ СРЕДЕ:

  1. 6.2. ГАЗООБМЕН В ВОЗДУШНОЙ СРЕДЕ
  2. ВОДНАЯ СРЕДА ЖИЗНИ. АДАПТАЦИИ ОРГАНИЗМОВ К ВОДНОЙ СРЕДЕ
  3.             Приложение 5 Показатели качества вод и формы миграции некоторых загрязняющих веществ в водной среде
  4. Газообмен в легких
  5. 7.2. Возмещение вреда природной среде
  6. Принципы нормирования химических веществ в окружающей среде
  7. Понятие о среде обитания. Абиотическая и биотическая среды
  8. СИЛА ВО ВНЕШНЕЙ СРЕДЕ
  9. СУЩЕСТВОВАНИЕ ВИДА В ОКРУЖАЮЩЕЙ ЕГО СРЕДЕ
  10. 2.7. Юридическая ответственность за нарушение законодательства об окружающей- среде
  11. 5. Международные конференции по окружающей среде
  12. Развитие техники в природной среде
  13. Асоциальная сущность педагогических явлений в криминальной среде
  14. Особенности адаптации человека к работе в жаркой среде
  15. § 1. ОТНОШЕНИЯ ЖИВЫХ СУЩЕСТВ К СВОЕЙ СРЕДЕ
  16. Глава восемнадцатаяПервое несчастье в среде обитания
  17. Глава 9 Функциональные связи в природной среде
  18. 21.5. Нормирование загрязняющих веществ в окружающей среде
  19. Использование гендерного анализа в образовательной среде