ЛАЗЕРНЫЙ ЛУЧ В РОЛИ СВЕРЛА
Сверление отверстий в часовых камнях-с этого начиналась трудовая деятельность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников скольжения. При изготовлении таких подшипников требуется высверлить в рубине - материале весьма твердом и в то же время хрупком-отверстия диаметром всего 1-0,05 мм.
Начиная с 1964 г. малопроизводительное механическое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «лазерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие-он его пробивает, вызывая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в част-
29
ности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазерной установки в автоматическом режиме-камень в секунду. Это в тысячу раз выше производительности механического сверления!
Вскоре после своего появления на свет лазер получил следующее задание, с которым справился столь же успешно,-сверление (пробивание) отверстий в алмазных фильерах. Возможно, не все знают, что для получения очень тонкой проволоки из меди, бронзы, вольфрама используется технология протягивания металла сквозь отверстие соответствующего диаметра. Такие отверстия высверливают в материалах, обладающих особо высокой твердостью,-ведь в процессе протягивания проволоки диаметр отверстия должен сохраняться неизменным. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстие в алмазе-сквозь так называемые алмазные фильеры. Лишь с помощью алмазных фильер удается получать сверхтонкую проволоку, имеющую диаметр всего 10 мкм. Но как просверлить тонкое отверстие в таком сверхтвердом материале, как алмаз? Механически это сделать очень трудно-для механического сверления одного отверстия в алмазной фильере требуется до десяти часов.
30
Так выглядит в разрезе отверстие в алмазной фильере. Лазерными импульсами пробивают черновой канал в алмазной заготовке. Затем, обрабатывая канал ультразвуком, шлифуя и полируя, придают ему необходимый профиль. Проволока, получаемая при протягивании через фильеру, имеет диаметр d


жиг. С помощью лазеров пробивают в керамике очень тонкие отверстия-диаметром всего 10 мкм. Заметим, что механическим сверлением такие отверстия получить нельзя.
То, что сверление - призвание лазера, ни у кого не вызывало сомнений. Здесь у лазера фактически не оказалось достойных конкурентов, особенно когда речь шла о сверлении особо тонких и особо глубоких отверстий, когда отверстия надо сверлить в очень хрупких или очень твердых материалах. Прошло сравнительно немного времени и стало ясно, что лазерный
луч может успешно применяться не только для сверления, но и для многих других операций по обработке материалов. Так что сегодня мы можем говорить о возникновении и развитии новой технологии - лазерной.
Источник:
Тарасов Л.В.. Знакомьтесь - лазеры. 1988
Еще по теме ЛАЗЕРНЫЙ ЛУЧ В РОЛИ СВЕРЛА:
- ЛАЗЕРНЫЙ ЛУЧ В РОЛИ ХИРУРГИЧЕСКОГО СКАЛЬПЕЛЯ
- ЭТОТ УДИВИТЕЛЬНЫЙ ЛАЗЕРНЫЙ ЛУЧ
- ЛАЗЕРНЫЙ ЛУЧ- УНИКАЛЬНЫЙ ИЗМЕРИТЕЛЬНЫЙ ИНСТРУМЕНТ
- ЛАЗЕРНАЯ СОРТИРОВКА АТОМОВ И МОЛЕКУЛ
- ЧТО ЗНАЧИТ «УПРАВЛЯТЬ» ЛАЗЕРНЫМ ЛУЧОМ?
- ПРЕСС-КОНФЕРЕНЦИЯ В МЕДИЦИНСКОМ ЛАЗЕРНОМ ЦЕНТРЕ
- ЛАЗЕРНАЯ ЛОКАЦИЯ
- ОБРАБОТКА МАТЕРИАЛОВ ЛАЗЕРНЫМ ЛУЧОМ
- ФАНТАЗИИ НА ЛАЗЕРНУЮ ТЕМУ
- ЛАЗЕРНАЯ СПЕКТРОСКОПИЯ
- «РАСТЯГИВАНИЕ» ЛАЗЕРНОГО ИМПУЛЬСА
- Принципы измерения расстояний лазерными (квантовыми) дальномерами
- ЛАЗЕРНЫЙ КОНТРОЛЬ ЗАГРЯЗНЕНИЙ АТМОСФЕРЫ И ОКЕАНОВ
- Трансмиокардиальная лазерная терапия (ТМЛТ)
-
Педагогика -
Cоциология -
БЖД -
Биология -
Горно-геологическая отрасль -
Гуманитарные науки -
Искусство и искусствоведение -
История -
Культурология -
Медицина -
Наноматериалы и нанотехнологии -
Науки о Земле -
Политология -
Право -
Психология -
Публицистика -
Религиоведение -
Учебный процесс -
Физика -
Философия -
Эзотерика -
Экология -
Экономика -
Языки и языкознание -