<<
>>

Экологические факторы и их действие

Экологический фактор1 — любой элемент окружающей среды, способный прямо или косвенно влиять на живой организм, хотя бы на одном из этапов его индивидуального развития, называют экологическим фактором.

[5]

Экологические факторы многообразны, при этом каждый фактор является совокупностью соответствующего условия среды и его ресурса (запаса в среде).

Экологические факторы среды (рис. 3.1) принято делить на две группы: факторы косной (неживой) природы — абиотические или абиогенные; факторы живой природы — биотические шли биогенные.

С другой стороны, по происхождению и те и другие бывают как природными, так и антропогенными, т. е. прямо или косвенно связанными с деятельностью человека, который не только меняет режимы природных экологических факторов,

ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ

АНТРОПОГЕННЫЕ

ФИЗИЧЕСКИЕ:

климатические;

топографические;

космические;

механический состав среды; высокотемпературные (огонь, пожары, извержения)

Рис.

3.1. Классификация экологических факторов

но и создает новые, синтезируя ядохимикаты, удобрения, строительные материалы, лекарства и т. п.

Известно, что в основу построения системы терминов должна быть положена достаточно емкая классификация, охватывающая все понятия в их взаимосвязи и развитии. Исключительная сложность, взаимосвязанность и взаимозависимость явлений в природе затрудняет классификацию в экологии. Наряду с приведенной классификацией экологических факторов существует много других (менее распространенных), в которых используют иные отличительные признаки. Так, выделяют факторы, зависящие и не зависящие от численности и плотности организмов. Например, на действие макроклиматических факторов не сказывается количество животных или растений, а эпидемии (массовые заболевания), вызываемые патогенными микроорганизмами, зависят от их количества на данной территории. Известны классификации, в которых все антропогенные факторы относят к биотическим. Абиотические факторы

В абиотической части среды обитания (в неживой природе) все факторы прежде всего можно разделить на физические и химические. Однако для понимания сути рассматриваемых явлений и процессов абиотические факторы удобно представить совокупностью климатических, топографических, космических факторов, а также характеристик состава среды (водной, наземной или почвенной) и др. Основные климатические факторы

Энергия Солнца. Она распространяется в пространстве в виде электромагнитных волн. Для организмов важны длина волны воспринимаемого излучения, его интенсивность и продолжительность воздействия.

Около 99% всей энергии солнечной радиации составляют лучи с длиной волны X = 170 ... 4000 нм, в том числе 48% приходится на видимую часть спектра (А. = 390 ... 760 нм), 45% — на близкую инфракрасную (X = 760 ... 4000 нм) и около 7% — на ультрафиолетовую (Xlt; 400 нм).

Преимущественное значение для фотосинтеза имеют лучи с X = 380 ... 710 нм. Длинноволновая (дальняя инфракрасная) солнечная радиация (X gt; 4000 нм) незначительно влияет на процессы жизнедеятельности организмов.

Ультрафиолетовые лучи с X gt; 320 нм в малых дозах необходимы животным и человеку, так как под их действием в организме образуется витамин D. Излучение с X lt; 290 нм губительно для живого, но до поверхности Земли оно не доходит, поглощаясь озоновым слоем атмосферы.

При прохождении через атмосферный воздух солнечный свет (рис. 3.2) отражается, рассеивается и поглощается. Чистый снег отражает примерно 80—95% солнечного света, загрязненный — 40—50%, черноземная почва — до 5%, сухая светлая почва — 35—45%, хвойные леса — 10—15%. Однако освещенность земной поверхности существенно колеблется в зависимости от времени года и суток, географической широты, экспозиции склона, состояния атмосферы и т. п.

Вследствие вращения Земли периодически чередуются светлое и темное время суток. Цветение, прорастание семян у растений, миграция, зимняя спячка, размножение животных и многое другое в природе связаны с длительностью фотопериода (длиной дня). Необходимость в свете для растений обусловливает быстрый их рост в высоту, ярусную структуру леса. Водные растения распространяются преимущественно в поверхностных слоях водоемов.

Рис. 3.2. Баланс солнечной радиации на поверхности Земли в дневное время

Температура. Температура главным образом связана с солнечным излучением, но в ряде случаев определяется энергией геотермальных источников.

При температуре ниже точки замерзания живая клетка физически повреждается образующимися кристаллами льда и гибнет, а при высоких температурах происходит денатурация1 ферментов. Абсолютное большинство растений и животных не выдерживает отрицательных температур тела. Верхний температурный предел жизни редко поднимается выше 40—45 °С.

В диапазоне между крайними границами скорость ферментативных реакций (следовательно, и интенсивность обмена веществ) удваивается с повышением температуры на каждые 10 °С.

Значительная часть организмов способна контролировать (поддерживать) температуру тела, причем в первую очередь наиболее жизненно важных органов. Такие организмы называют гомойотермными — теплокровными (от греч. ho- moios — подобный, therme — теплота), в отличие от пойкило- термных — холоднокровных (от греч. poikilos — различный, переменчивый, разнообразный), имеющих непостоянную температуру, зависящую от температуры окружающей среды.

В водной среде благодаря высокой теплоемкости воды изменения температуры менее резкие и условия более стабильные, чем на суше. Известно, что в регионах, где температура в течение суток, а также в разные сезоны сильно меняется, разнообразие видов меньше, чем в регионах с более постоянными суточными и годовыми температурами.

Температура, как и интенсивность света, зависит от географической широты, сезона, времени суток и экспозиции склона. Действие экстремальных температур (низких и высоких) усиливается сильными ветрами.

Изменение температуры по мере подъема в воздушной среде или погружения в водную среду называют температурной стратификацией. Обычно и в том и в другом случае наблюдается непрерывное снижение температуры с определенным градиентом. Тем не менее существуют и иные варианты. Так, в летний период поверхностные воды нагреваются сильнее глубинных. В связи со значительным уменьшением плотности воды по мере нагрева начинается ее циркуляция в поверхностном нагретом слое без смешения с более плотной, холодной водой

Денатурация (лишение природных свойств) — изменение естественных свойств белков при изменениях физических и химических условий среды.

нижерасположенных слоев. В результате между теплым и холодным слоями образуется промежуточная зона с резким градиентом температуры. Все это влияет на размещение в воде живых организмов, а также на перенос и рассеивание поступающих примесей.

Подобное явление встречается и в атмосфере, когда охлажденные слои воздуха смещаются вниз и располагаются под теплыми слоями, т. е. имеет место температурная инверсия1, способствующая накоплению загрязняющих веществ в приземном слое воздуха.

Инверсии способствуют некоторые особенности рельефа, например, котлованы и долины. Она возникает при наличии на определенной высоте веществ, например аэрозолей, нагреваемых непосредственно за счет прямого солнечного излучения, что вызывает более интенсивное прогревание верхних воздушных слоев.

В почвенной среде суточная и сезонная стабильность (колебания) температуры зависят от глубины (рис. 3.3). Значительный градиент температур (а также влажности) позволяет обитателям почвы обеспечивать себе благоприятную среду путем незначительных перемещений.

1 Инверсия (от лат. inversio — перестановка). Инверсия температуры — повышение температуры воздуха с высотой в некотором слое атмосферы вместо обычного понижения.

Наличие и численность живых организмов могут влиять на температуру. Например, под пологом леса или под листьями отдельного растения имеет место иная температура.

Осадки, влажность. Вода обязательна для жизни на Земле, в экологическом плане она уникальна (см. разд. 2.1, 2.2). При практически одинаковых географических условиях на Земле существуют и жаркая пустыня, и тропический лес (рис. 3.4). Различие состоит только в годовом количестве осадков: в первом случае 0,2—200 мм, а во втором 900—2000 мм.

Осадки, тесно связанные с влажностью воздуха, представляют собой результат конденсации и кристаллизации водяных паров в высоких слоях атмосферы. В приземном слое воздуха образуются росы, туманы, а при низких температурах наблюдается кристаллизация влаги — выпадает иней.

Одна из основных физиологических функций любого организма — поддержание на достаточном уровне количества воды в теле. В процессе эволюции у организмов сформировались разнообразные приспособления к добыванию и экономному расходованию воды, а также к переживанию засушливого периода. Одни животные пустыни получают воду из пищи, другие за счет окисления своевременно запасенных жиров (например, верблюд, способный путем биологического окисления из 100 г жира получить 107 г метаболической воды); при этом у них минимальна водопроницаемость наружных покровов тела, преимущественно ночной образ жизни и т. д. При периоди-

Рис. 3.4. Зависимость типа растительности от климатических условий

ческой засушливости характерно впадание в состояние покоя с минимальной интенсивностью обмена веществ.

Наземные растения получают воду главным образом из почвы. Малое количество осадков, быстрый дренаж, интенсивное испарение либо сочетания этих факторов ведут к иссушению, а избыток влаги — к переувлажнению и заболачиванию почв.

Баланс влаги зависит от разницы между количеством выпавших осадков и количеством воды, испарившейся с поверхностей растений и почвы, а также путем транспирации1. В свою очередь процессы испарения непосредственно зависят от относительной влажности атмосферного воздуха. При влажности, близкой к 100%, испарение практически прекращается, и если дополнительно понижается температура, то начинается обратный процесс — конденсация (образуется туман, выпадают роса, иней).

Помимо отмеченного, влажность воздуха как экологический фактор при своих крайних значениях (повышенной и пониженной влажности), усиливает воздействие (усугубляет) действие температуры на организм.

Насыщение воздуха парами воды редко достигает максимального значения. Дефицит влажности — разность между максимально возможным и фактически существующим насыщением при данной температуре. Это один из важнейших экологических параметров, поскольку характеризует сразу две величины: температуру и влажность. Чем выше дефицит влажности, тем суше и теплее, и наоборот.

Режим осадков — важнейший фактор, определяющий миграцию загрязняющих веществ в природной среде и вымывание их из атмосферы.

Подвижность среды. Причинами возникновения движения воздушных масс (ветра) являются в первую очередь неодинаковый нагрев земной поверхности, вызывающий перепады давления, а также вращение Земли. Ветер направлен в сторону более прогретого воздуха.

Ветер — важнейший фактор распространения на большие расстояния влаги, семян, спор, химических примесей и т. п. Он способствует как снижению околоземной концентрации пыле- и газообразных веществ вблизи места их поступления в атмосферу, так и повышению фоновых концентраций в воздушной среде вследствие выбросов далеких источников, включая трансграничный перенос.

Транспирация — испарение воды наземными частями растений.

Ветер ускоряет транспирацию (испарение влаги наземными частями растений), что особенно ухудшает условия существования при низкой влажности. Кроме того, он косвенно влияет на все живые организмы суши, участвуя в процессах выветривания и эрозии.

Подвижность в пространстве и перемешивание водных масс способствуют поддержанию относительной гомогенности (однородности) физических и химических характеристик водных объектов. Средняя скорость поверхностных течений лежит в пределах 0,1—0,2 м/с, достигая местами 1 м/с, у Гольфстрима — 3 м/с.

Давление. Нормальным атмосферным давлением считается абсолютное давление на уровне поверхности Мирового океана 101,3 кПа, соответствующее 760 мм рт. ст. или 1 атм. В пределах земного шара существуют постоянные области высокого и низкого атмосферного давления, причем в одних и тех же точках наблюдаются сезонные и суточные его колебания. По мере увеличения высоты относительно уровня океана давление уменьшается, снижается парциальное давление кислорода, усиливается транспирация у растений.

Периодически в атмосфере образуются области пониженного давления с мощными воздушными потоками, перемещающимися по спирали к центру, которые называют циклонами. Для них характерно большое количество осадков и неустойчивая погода. Противоположные природные явления называют антициклонами. Они характеризуются устойчивой погодой, слабыми ветрами и в ряде случаев температурной инверсией. При антициклонах порой возникают неблагоприятные метеорологические условия, способствующие накоплению в приземном слое атмосферы загрязняющих веществ.

Различают также морское и континентальное атмосферное давление.

Давление в водной среде возрастает по мере погружения. Благодаря значительно (в 800 раз) большей, чем у воздуха, плотности воды на каждые 10 м глубины в пресноводном водоеме давление увеличивается на 0,1 МПа (1 атм). Абсолютное давление на дне Марианской впадины превышает 110 МПа (1100 атм).

Ионизирующие излучения. Ионизирующим называют излучение, образующее пары ионов при прохождении через вещество; фоновым — излучение, создаваемое природными источниками. Оно имеет два основных источника: космическое излучение и радиоактивные изотопы и элементы в минералах земной коры, возникшие некогда в процессе образования вещества Земли. Из-за большого периода полураспада ядра

многих первозданных радиоактивных элементов сохранились в недрах Земли до настоящего времени. Главнейшие из них — калий-40, торий-232, уран-235 и уран-238. Под воздействием космического излучения в атмосфере постоянно образуются все новые ядра радиоактивных атомов, главные из которых — углерод-14 и тритий.

Радиационный фон ландшафта — одна из непременных составляющих его климата. В формировании фона принимают участие все известные источники ионизирующего излучения (рис. 3.5), однако вклад каждого из них в общую дозу облучения зависит от конкретной географической точки. Человек как обитатель природной среды получает основную часть облучения от естественных источников радиации, и избежать этого невозможно. Все живое на Земле подвергается излучению из Космоса на протяжении всей истории существования и адаптировалось к этому.

Рис. 3.5. Дозы получаемого радиоактивного облучения, мрад/г.

(по Н. Ф. Реймерсу): 1 — космические лучи; 2 — внутренние а-лучи и излучение 40К, содержащегося в живых организмах; 3 — излучение местных внешних источников

Горные ландшафты благодаря значительной высоте над уровнем моря характеризуются повышенным вкладом космического излучения. Ледники, выполняя функцию поглощающего экрана, задерживают в своей массе излучение подстилающих коренных пород. Обнаружены различия в содержании радиоактивных аэрозолей над морем и сушей. Суммарная радиоактивность морского воздуха в сотни и тысячи раз меньше, чем континентального.

На Земле есть районы, где мощность экспозиционной дозы в десятки раз превышает средние значения, например, районы месторождений урана и тория. Такие места называют урановыми и ториевыми провинциями. Стабильный и относительно более высокий уровень излучения наблюдается в местах выхода гранитных пород.

Биологические процессы, сопровождающие образование почв, существенно влияют на накопление в последних радиоактивных веществ. При малом содержании гумусовых веществ их активность слабая, тогда как черноземы всегда отличались более высокой удельной активностью. Особенно она высока у черноземных и луговых почв, расположенных близко к гранитным массивам. По степени возрастания удельной активности почвы ориентировочно можно расположить в следующем порядке: торфяные; черноземные; почвы степной зоны и лесостепи; почвы, развивающиеся на гранитах.

Влияние периодических колебаний интенсивности космического излучения у земной поверхности на дозу облучения живых организмов практически не существенно.

Во многих районах земного шара мощность экспозиционной дозы, обусловленная излучением урана и тория, достигает уровня облучения, существовавшего на Земле в геологически обозримое время, при котором шла естественная эволюция живых организмов. В целом ионизирующее излучение более губительно воздействует на высокоразвитые и сложные организмы, причем человек отличается особой чувствительностью. Некоторые вещества распределяются в организме равномерно, например углерод-14 или тритий, а другие накапливаются в определенных органах. Так, радий-224, -226, свинец-210, полоний-210 аккумулируются в костных тканях. Сильное воздействие на легкие оказывает инертный газ радон-220, порой выделяющийся не только из залежей в литосфере, но и из минералов, добытых человеком и применяемых в качестве строительных материалов.

Радиоактивные вещества могут накапливаться в воде, почве, осадках или в воздухе, если скорость их поступления превышает скорость радиоактивного распада. В живых организмах накопление радиоактивных веществ происходит при их попадании с пищей («правило биотического усиления», см. разд. 5.1.3). Топографические факторы

Влияние абиотических факторов в значительной мере зависит от топографических[6] характеристик местности, которые могут сильно изменять как климат, так и особенности развития почв (см. разд. 7.2.4.6). Основной топографический фактор — высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастает количество осадков, скорость ветра и интенсивность радиации, понижается давление. В результате в горной местности по мере подъема наблюдается вертикальная зональность распределения растительности, соответствующая последовательности смены широтных зон от экватора к полюсам (рис. 3.6).

Горные цепи могут служить климатическими барьерами. Поднимаясь над горами, воздух охлаждается, что часто вызывает осадки и тем самым снижает его абсолютное влагосодержание. Попадая затем на другую сторону горной гряды, осушенный воздух способствует снижению интенсивности дождей (снегопада), чем создается «дождевая тень».

Горы могут играть роль изолирующего фактора в процессах видообразования, так как служат барьером для миграции организмов.

Важный топографический фактор — экспозиция (освещенность) склона. В Северном полушарии теплее на южных склонах, а в Южном полушарии — на северных склонах.

Другой важный фактор — крутизна склона, влияющая на дренаж. Вода стекает со склонов, смывая почву, уменьшая ее слой. Кроме того, под действием силы тяжести почва медленно сползает вниз, что ведет к ее скоплению у основания склонов. Наличие растительности сдерживает эти процессы, однако при уклонах более 35° почва и растительность обычно отсутствуют и создаются осыпи из рыхлого материала.

Рис. 3.6. Вертикальная и широтная зональности растительности

Рельеф местности — один из главных факторов, влияющих на перенос, рассеивание или накопление примесей в атмосферном воздухе. Состав среды

Состав водной среды. Большая часть поверхности Земли (около 366 из 510 млн км[7] [8], или 72%) покрыто водой. Распространение и жизнедеятельность организмов в водной среде в значительной степени зависят от ее химического состава. Недостатка в воде как в химическом веществе в водных средах нет, за исключением случаев пересыхания водоемов. Тем не менее проблемы, связанные с водой, возникают даже у водных организмов.

Прежде всего водные организмы подразделяют на пресноводные и морские в зависимости от солености воды, в которой они обитают. Соленость океанской воды меняется как по глубине, так и по акватории. В Северном Ледовитом океане она ниже 31%ог, а в Красном море выше 42%о. Содержание солей 1

в воде Мертвого моря достигает 26—27%, тогда как концентрация солей в пресных водоемах около 0,05% .

Морская вода является сложным солевым раствором со средней соленостью 35,2 г в 1 кг воды, т. е. 3,52% по массе, или 35,2%о.

Соли и другие растворенные в воде вещества находятся преимущественно в виде ионов. Состав солей разнообразен, в океанической воде встречаются практически все химические элементы и их изотопы, но основную массу составляют девять основных ионов (табл. 3.1), соотношение между которыми постоянно и не зависит от уровня солености, места и глубины, поэтому ее можно определить по одному главному иону. Это соотношение существует давно, не менее 1 млрд лет, и акад. В. И. Вернадский предложил принять его в качестве константы для нашей планеты. Главный компонент солей морской воды — хлорид натрия, в пресных водах преобладают карбонаты.

Содержание ионов в морской воде

Таблица 3. 1

Концентрация

Концентрация

Ион

мг в 1 кг воды

% от массы растворенных веществ

Ион

мг в 1 кг воды

% от массы растворенных веществ

18 980

55,04

кг

380

1,10

Na +

10 560

30,61

НСОд,

сог

140

0,41

2650

7,68

65

0,19

Mg2 +

1270

3,69

н2во-

5

0,07

Са2+

400

1,16

итого

34 450

99,95

Повышение солености воды в среде обитания ведет к потере воды организмом (путем осмоса1).

Редкие организмы допускают большие колебания солености. Обычно они обитают в эстуариях (место впадения пресно- [9]

водной реки в соленое море или длинный и узкий залив океана) или в маршах (низменная лугово-болотная полоса вдоль морского побережья и у устья рек, заливаемая морской водой лишь при очень высоких приливах).

По составу растворенных минеральных веществ даже пресные воды могут существенно отличаться в различных природных водоемах и прежде всего в подземных и поверхностных водах. Соленость воды влияет и на наземные растения. При чрезмерно интенсивном испарении воды либо ограниченности осадков почва может засоляться. Такая проблема существует при искусственном орошении.

Любые воды в природных водоемах, помимо растворенных веществ, содержат некоторое количество взвешенных частиц, наличие которых характеризует мутность воды, ее обратную характеристику — прозрачность, а также световой режим в глубине водоема.

Один из основных комплексных показателей химического состава водной среды — кислотность (рН). Одни организмы эволюционно приспособлены к жизни в кислой среде (рН lt; 7), другие — в щелочной (рН gt; 7), третьи — в нейтральной (рН - 7).

В составе природной водной среды всегда присутствуют растворенные газы, из которых первоочередное значение имеют кислород и диоксид углерода, участвующие в фотосинтезе и дыхании водных организмов (табл. 3.2). В целом масса растворенных газов почти в 30 раз меньше массы газов в атмосфере.

Колебание содержания С02 в водах Мирового океана в предшествующие эпохи в сравнении с колебаниями концентрации углекислого газа в атмосфере показано на рис. 3.7.

Содержание основных газов в воздухе

и в воде Мирового океана

Таблица 3.2

Газ

Содержание, млрд т

в Мировом океане

в атмосфере Земли

Диоксид углерода С02

140 000

2 300

Кислород О2

14 000

1 180 000

Азот N2

1,8

3 860 000

Среди прочих растворенных в океане газов наиболее заметны сероводород, аргон и метан. На отдельных участках дна сероводород образует значительные скопления. Черное море, начиная с глубины 150—200 м, является сероводородным до самого дна. Сероводородные донные участки, возможно, остались от первичного океана и населены, как и в давние времена, организмами, обходящимися без свободного кислорода (см. разд. 2.2.1.3).

Состав газов, растворенных в водах океана, близок к составу первичной атмосферы нашей планеты, в которой было заметно больше диоксида углерода и меньше кислорода.

Состав воздуха. Один из главных абиотических факторов наземной (воздушной) среды обитания — состав воздуха, естественной смеси газов, сложившейся в ходе эволюции Земли. Состав воздуха в современной атмосфере находится в состоянии динамического равновесия, зависящего от жизнедеятельности живых организмов и геохимических явлений глобального масштаба.

Воздух, лишенный влаги и взвешенных частиц, имеет на высоте уровня моря практически одинаковый состав во всех местностях земного шара, а также на протяжении суток и в разные периоды года. Однако в различные эпохи существования планеты состав воздуха был различен. Считается, что наиболее сильно изменялось содержание диоксида углерода и кислорода (рис. 3.7). Роль кислорода и диоксида углерода подробно показана в разд. 2.2.

Азот, присутствующий в атмосферном воздухе в наибольшем количестве, в газообразном состоянии для абсолютного большинства организмов, особенно для животных, является нейтральным. Только для ряда микроорганизмов (клубеньковых бактерий, азотобактеров, синезеленых водорослей и др.) азот воздуха служит фактором жизнедеятельности. Эти микроорганизмы усваивают молекулярный азот, а после отмирания и минерализации снабжают высшие растения доступными формами этого химического элемента.

Присутствие в воздухе иных газообразных веществ или аэрозолей (твердых или жидких частиц, находящихся в воздухе во взвешенном состоянии) в каких-либо заметных количествах изменяет привычные условия среды обитания, влияет на живые организмы.

Состав почв. Почва — слой веществ, лежащих на поверхности земной коры. Она представляет собой продукт физического, химического и биологического преобразования горных пород (рис. 3.8) и является трехфазной средой, включающей твердые, жидкие и газообразные компоненты, находящиеся в следующих соотношениях (в %):

минеральная основа              обычно 50 — 60% от общего состава

органическое вещество.              до 10

вода              25 — 35

воздух              15 — 25

В данном случае почва рассматривается среди прочих абиотических факторов, хотя на самом деле она является важней-

Рис. 3.8. Схема преобразования минерального вещества в почву

шим звеном, связывающим абиотические и биотические факторы среды обитания.

Минеральный неорганический состав п о ч- в ы. Горная порода под действием химических и физических факторов природной среды постепенно разрушается. Образующиеся части различны по размеру — от валунов и камней до крупных песчинок и мельчайших частиц глины. Механические и химические свойства почвы в основном зависят от мелкого грунта (частицы менее 2 мм), который принято подразделять в зависимости от размера 5 (в мкм) на следующие системы:

песок              5 = 60 — 2000

алеврит (иногда называемый «пылью»)              8 = 2 — 60

глину.              5 менее 2

Структура почвы определяется относительным содержанием в ней песка, алеврита, глины и обычно иллюстрируется диаграммой — «треугольником почвенной структуры» (рис. 3.9).

Значение почвенной структуры становится понятным при сравнении свойств чистого песка и глины. «Идеальной» почвой считается состав, содержащий равные количества глины и песка в сочетании с частицами промежуточных размеров. В таком случае образуется пористая, крупчатая структура. Соответствующие почвы называют суглинками. Они имеют достоинства двух крайних типов почв без их недостатков. Большая часть минеральных компонентов представлена в почве кристаллическими структурами. Песок и алеврит состоят в основ

ном из инертного минерала — кварца (Si02), называемого кремнеземом.

Глинистые минералы в большинстве встречаются в виде мельчайших плоских кристаллов, часто шестигранной формы, состоящих из слоев гидроокиси алюминия или глинозема (А1203) и слоев силикатов (соединений силикат-ионов SiO|~

с катионами, например, алюминия А13+ или железа Fe2+). Удельная поверхность кристаллов очень велика и составляет 5—800 м2 на 1 г глины, что способствует удержанию воды и питательных веществ в почве.

В целом считается, что свыше 50% минерального состава почвы составляет кремнезем (Si02), 1—25% — глинозем (А1203), 1—10% —оксиды железа (Fe^O^), 0,1—5% —оксиды магния, калия, фосфора, кальция (MgO, -К20, Р203, СаО).

В сельском хозяйстве почвы делят на тяжелые (глины) и легкие (пески), чем отражают величину усилий, необходимых для обработки почвы сельскохозяйственными орудиями. Ряд дополнительных характеристик минерального состава почвы будет изложен в разд. 7.2.4.

Содержание воды в почве. Вода необходима всем почвенным организмам, она поглощается корнями растений и принимает участие в процессах разрушения материнской породы, подстилающей почву. Благодаря воде происходит миграция и дифференциация химических элементов в почве. Более правильно жидкую часть почвы рассматривать как почвенный раствор.

Общее количество воды, которое может быть удержано почвой, складывается из гравитационной, физически связанной, капиллярной, химически связанной и парообразной воды (рис. 3.10).

Гравитационная вода может свободно просачиваться вниз через почву, достигая уровня грунтовых вод, что ведет к вымыванию различных питательных веществ.

Физически связанная (гигроскопическая) вода адсорбируется на частицах почвы в виде тонкой прочно связанной пленки. Ее количество зависит от содержания твердых частиц. В глинистых почвах такой воды значительно больше (около 15% веса почвы), чем в песчаных (около 0,5%). Гигроскопическая вода наименее доступна растениям.

Рис. 3.10. Типы почвенной воды, доступной корням растений (по Н. Грину, У. Стауту, Д. Тейлору): 1 — частицы почвы; 2 — гигроскопическая вода; 3 — капиллярная вода; 4 — воздух или гравитационная вода

Капиллярная вода удерживается вокруг почвенных частиц за счет сил поверхностного натяжения. При наличии узких пор или канальцев капиллярная вода может подниматься от уровня грунтовых вод вверх, играя центральную роль в регулярном снабжении растений влагой. Глины удерживают больше капиллярной воды, чем пески.

Химически связанная вода и парообразная практически недоступны корневой системе растений.

Содержание воздуха в почве. Поры почвы, не занятые водой, заполняет почвенный воздух. Насыщенность воздухом (аэрация) играет важную роль в почвенных процессах. С увеличением размера частиц грунта объем пор возрастает.

По сравнению с составом атмосферного воздуха из-за дыхания организмов с глубиной уменьшается содержание кислорода (до 10%) и увеличивается концентрация диоксида углерода (достигая 19%). В течение года и суток состав почвенного воздуха сильно меняется. Тем не менее почвенный воздух постоянно обновляется и пополняется за счет атмосферного.

Заболачивание почвы обусловливает вытеснение воздуха водой, и условия становятся анаэробными. Так как микроорганизмы и корни растений продолжают выделять С02, образующий с водой Н2С03, то замедляется обновление гумуса и накапливаются гуминовые кислоты. Все это повышает кислотность почвы, которая, наряду с истощением запасов кислорода, неблагоприятно отражается на почвенных микроорганизмах. Длительные анаэробные условия ведут к отмиранию растений.

Характерный для заболоченных почв серый оттенок придает восстановленная форма железа (Fe2+), окисленная форма (Fe3+) окрашивает почву в желтый, красный и коричневый цвета. Космические факторы

Наша планета не изолирована от процессов, протекающих в космическом пространстве. Земля периодически сталкивается с астероидами, сближается с кометами, на нее попадают космическая пыль, метеоритные вещества, разнообразны виды излучений Солнца и звезд. Циклически (один из циклов имеет период 11,4 г.) солнечная активность меняется.

Наукой накоплено множество фактов, подтверждающих влияние Космоса на жизнь Земли. Огонь (пожары)

К числу важных природных абиотических факторов относят пожары, которые при определенном сочетании климатических условий приводят к полному или частичному выгоранию наземной растительности.

Основной причиной возгораний в естественных условиях являются молнии. По мере развития цивилизации увеличивалось число пожаров, связанных с деятельностью человека: выжигание участков леса для земледелия, небрежное обращение с огнем, аварии и др.

В местностях с явно выраженным сухим климатическим сезоном растительность в процессе эволюции приспособилась к воздействию огня (пожаров), сформировалась специфическая флора, отличающаяся твердой и прочной кожурой семян, быстрым ростом и ранним плодоношением, огнестойкостью коры и т. п.

Косвенное экологически значимое воздействие огня проявляется прежде всего в устранении конкуренции для видов, переживших пожар. Кроме того, после сгорания растительного покрова резко изменяются такие условия среды, как освещенность, разница между дневной и ночной температурами, влажность. Также облегчаются ветровая и дождевая эрозия почвы, ускоряется минерализация гумуса.

Считают, что огонь ежегодно уничтожает растительность на площади около 20 млн га. При этом в атмосферу поступает значительное количество продуктов пиролиза растительной .массы и ее обитателей, что существенно сказывается на загазованности среды обитания в соседних районах.

Однако почва после пожаров обогащается питательными элементами, такими, как фосфор, калий, кальций, магний. Животные, пасущиеся на участках, подвергающихся периодическим пожарам, получают более полноценное питание. Искусственное предотвращение пожаров вызывает изменения факторов среды обитания, для поддержания которых в естественных пределах необходимы периодические выгорания растительности. Совокупное воздействие

экологических факторов

Экологические факторы среды воздействуют на организм одновременно и совместно. Совокупное воздействие факторов (констелляция/ в той или иной мере взаимоизменяет характер воздействия каждого отдельного фактора.

Хорошо изучено влияние влажности воздуха на восприятие животными температуры. С повышением влажности уменьшается интенсивность испарения влаги с поверхности кожи, что затрудняет работу одного из наиболее эффективных механизмов приспособления к высокой температуре. Низкие температуры также легче переносятся в сухой атмосфере, имеющей меньшую теплопроводность (лучшие теплоизоляционные свойства). Таким образом, влажность среды меняет субъективное восприятие температуры у теплокровных животных, в том числе у человека.

В комплексном действии экологических факторов среды значение отдельных экологических факторов неравноценно. Среди них выделяют ведущие (главные) и второстепенные факторы.

Ведущими являются те факторы, которые необходимы для жизнедеятельности, второстепенными — существующие или фоновые факторы. Обычно у разных организмов различные ведущие факторы, даже если организмы живут в одном месте. Кроме того, смену ведущих факторов наблюдают при переходе организма в другой период своей жизни. Так, в период цветения ведущим фактором для растения может быть свет, а в период формирования семян — влага и питательные вещества.

Иногда недостаток одного фактора частично компенсируется усилением другого. Например, в Арктике продолжительный световой день компенсирует недостаток тепла. Биотические факторы

Все живое, окружающее организм в среде обитания, составляет биотическую среду или б и о т у. Биотические факторы — это совокупность влияний жизнедеятельности одних организмов на другие.

Взаимоотношения между животными, растениями, микроорганизмами чрезвычайно многообразны. Прежде всего различают гомотипические реакции, т. е. взаимодействие особей одного и того же вида, и гетеротипические — отношения представителей разных видов.

Представители каждого вида способны существовать в таком биотическом окружении, где связи с другими организмами обеспечивают им нормальные условия жизни. Главной формой проявления этих связей служат пищевые взаимоотношения организмов различных категорий, составляющие осно-

ву пищевых (трофических) цепей, сетей и трофической структуры биоты.

Кроме пищевых связей, между растительными и животными организмами возникают также пространственные взаимоотношения. В результате действия многих факторов разнообразные виды объединяются не в произвольном сочетании, а только при условии приспособленности к совместному обитанию. .2.1 . Формы биотических взаимоотношений

Симбиоз (сожительство). Это форма взаимоотношений, при которой оба партнера или один из них извлекают пользу от другого.

Кооперация. Кооперация представляет собой длительное, неразделимое взаимовыгодное сожительство двух и более видов организмов. Например, отношения рака-отшельника и актинии.

Межвидовая взаимопомощь. Она заключается, например, в том, что птицы уничтожают личинок-паразитов под кожей буйволов или сороки предупреждают об опасности крупных копытных.

Комменсализм. Комменсализм — это взаимодействие между организмами, когда жизнедеятельность одного доставляет пищу (нахлебничество) или убежище (квартиранство) другому. Типичные примеры — гиены, подбирающие остатки недоеденной львами добычи, мальки рыб, прячущиеся под зонтиками крупных медуз, а также некоторые грибы, растущие у корней деревьев.

Мутуализм. Мутуализм — взаимополезное сожительство, когда присутствие партнера становится обязательным условием существования каждого из них. Примером служит сожительство клубеньковых бактерий и бобовых растений, которые могут совместно жить на почвах, бедных азотом, и обогащать им почву.

Антибиоз. Форма взаимоотношений, при которой оба партнера или один из них испытывают отрицательное влияние, называется антибиозом.

Конкуренция. Это — отрицательное воздействие организмов друг на друга в борьбе за пищу, местообитание и другие необходимые для жизни условия. Проявляется наиболее отчетливо на популяционном уровне.

Хищничество. Хищничество — отношение между хищником и жертвой, заключающееся в поедании одного организма другим. Хищники — это животные или растения, ловящие и поедающие животных как объект питания. Так, например, львы поедают растительноядных копытных, птицы — насекомых, крупные рыбы — более мелких. Хищничество одновременно полезно для одного и вредно для другого организма.

В то же время все эти организмы необходимы друг другу. В процессе взаимодействия «хищник — жертва» происходят естественный отбор и приспособительная изменчивость, т. е. важнейшие эволюционные процессы. В естественных условиях ни один вид не стремится (и не может) привести к уничтожению другого. Более того, исчезновение какого-либо естественного «врага» (хищника) из среды обитания может способствовать вымиранию его жертвы.

Паразитизм. Это — взаимодействие организмов, при котором один из них живет за счет другого, находясь на поверхности или внутри его тела. Паразит использует в пищу тело своего хозяина постепенно, сохраняя ему жизнь до окончания своего жизненного цикла. С общебиологических позиций паразит также необходим хозяину. Исчезновение (или уничтожение) такого «естественного врага» наносит ущерб хозяину, так как слабые, отставшие в развитии или имеющие иные недостатки особи не будут уничтожаться, что способствует постепенной деградации и вымиранию. Вид, не имеющий «врагов», обречен на вырождение. Отмеченное обстоятельство имеет особо важное значение в таких случаях, как разработка и применение средств защиты растений в сельском хозяйстве.

Нейтрализм. Взаимонезависимость разных видов, обитающих на одной территории, называют нейтрализмом. Напри - мер, белки и лоси не конкурируют друг с другом, но засуха в лесу сказывается на тех и на других, хотя в разной степени. Биотическое влияние на растения

Биотические факторы, воздействующие на растения как первичные продуценты органического вещества, подразделяют на зоогенные и фитогенные.

Зоогенные биотические факторы. К факторам воздействия животных на растительность прежде всего относится поедание растения целиком или отдельных его органов (частей). Объедание животными ветвей и побегов изменяет форму кроны деревьев. Значительное количество семян идет на питание птиц и грызунов. Растения, повреждаемые животными-фито- фагами, приобретают защитные приспособления (колючки, шипы и т. п.), образуют избыточную фитомассу, усиленно наращивают оставшиеся листья и т. п.

Экологически значимым фактором является и механическое воздействие животных на растения, заключающееся в повреждении всего растения при поедании его частей, а также вытаптывание.

Имеется и положительное влияние животных на жизненные процессы растений, например, опыление насекомыми и птицами.

Фитогенные биотические факторы. Растения, испытывая многообразные влияния от соседних растений, одновременно сами воздействуют на них. Повсеместно существует переплетение и срастание корней, охлестывание ветвями соседних крон, использование одним растением другого для прикрепления и многие другие формы взаимоотношений между растениями.

Любое растительное сообщество в свою очередь влияет на совокупность абиотических характеристик среды своего обитания. Известно, насколько специфика абиотических условий в пределах лесного массива отличается от таковых в поле или на участке степи. Биотические факторы почвенного покрова

В процессах образования и функционирования почвы важнейшую роль играют живые организмы. В первую очередь к ним относятся зеленые растения, извлекающие из почвы питательные химические вещества и возвращающие их обратно с отмирающими тканями. В лесах основным материалом подстилки и гумуса служат листва и хвоя деревьев, определяющие кислотность почвы: рН хвои ели составляет 4,3, сосны — 5,1, листьев березы — 5,7. Растительность создает непрерывный поток зольных элементов из более глубоких слоев почвы к ее поверхности, т. е. их биологическую миграцию.

В почве постоянно обитает множество организмов различных групп. На 1 м2 площади почвы встречаются десятки тысяч червей, мелких членистоногих. В ней живут грызуны, ящерицы, роют норы кролики. Часть жизненного цикла многих беспозвоночных (жуки, прямокрылые и т. п.) также проходит в почве. Ходы и норы способствуют перемешиванию и аэрации почвы, облегчают рост корней.

Проходя через пищеварительный тракт червя, почва измельчается, минеральные и органические компоненты перемешиваются, структура почвы улучшается.

Усредненная почвенная зоомасса (кг/га) составляет:

в тундре.              70

в хвойных лесах              200

в лиственных лесах              1000

в пустыне.              10

Протекающие в почве процессы синтеза, биосинтеза, разнообразные химические реакции преобразования веществ связаны с жизнедеятельностью бактерий. Некоторые бактерии участвуют только в цикле превращения одного элемента, например серы, другие — в циклах превращения нескольких элементов, например, углерода, азота, фосфора и кальция. При отсутствии в почве специализированных групп бактерий эту роль выполняют почвенные животные, которые переводят крупные растительные остатки в микроскопические частицы, таким образом делая органические вещества доступными для микроорганизмов.

Среди почвенных бактерий особую функцию выполняют нитрифицирующие (азотфиксирующие), играющие важнейшую роль в круговороте азота в природе. За год бактериями фиксируется 160—170 млн т азота.

<< | >>
Источник: Николайкин Н. И.. Экология: Учеб. для вузов. 2004

Еще по теме Экологические факторы и их действие:

  1. 1. Понятие и источники экологического права
  2. Экологические преступления
  3. ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ СРЕДЫ И ИХ КЛАССИФИКАЦИЯ.
  4. ЗАКОНОМЕРНОСТИ ДЕЙСТВИЯ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ НА ОРГАНИЗМЫ. ЛИМИТИРУЮЩИЙ ФАКТОР. ЗАКОН МИНИМУМА ЛИБИХА. ЗАКОН ТОЛЕРАНТНОСТИ ШЕЛФОРДА. УЧЕНИЕ ОБ ЭКОЛОГИЧЕСКИХ ОПТИМУМАХ ВИДОВ. ВЗАИМОДЕЙСТВИЕ ЭКОЛОГИЧЕСКИХ ФАКТОРОВ.
  5. § 4. КЛАССИФИКАЦИЯ ФАКТОРОВ СРЕДЫ
  6. 2.4. Программная лекция 2.2. по модулю 2 "Основы традиционной экологии”: - Теоретическая экология: экологические условия, факторы, ресурсы, экологическая ниша
  7. II. СРЕДА ОБИТАНИЯ. ФАКТОРЫ СРЕДЫ И АДАПТАЦИИ К НИМ ОРГАНИЗМОВ. СРЕДЫ ЖИЗНИ
  8. 2.2. Право на информацию об экологически значимых факторах, влияющих на здоровье
  9. 1. Понятие и факторы создания экологически опасных ситуаций
  10. Глава шестая ЭКОЛОГИЧЕСКАЯ БЕЗОПАСНОСТЬ - «НОВАЯ ЦЕННОСТЬ НАЦИИ»
  11. Факторы а) Природные
  12. Учет воздействия естественных экологических факторов на здоровье человека
  13. 3.2. Совместное действие экологических факторов
  14. Процесс обучения на основе технологии развития экологической культуры
  15. Классификация экологических чрезвычайных ситуаций
  16. Классификация факторов среды. Абиотические факторы