БИОГЕННЫЙ КРУГОВОРОТ


Совместная деятельность различных живых организмов определяет закономерный круговорот отдельных элементов и химических соединений, включающий введение их в состав живых клеток, преобразования химических веществ в процессах метаболизма, выведение в окружающую среду и деструкцию органических веществ, в результате которой высвобождаются минеральные вещества, вновь включающиеся в биологические циклы.
Процессы круговорота происходят в конкретных экосистемах, но в полном виде биогеохимические циклы реализуются лишь на уровне биосферы в целом. Ниже рассматриваются наиболее значимые элементы круговорота веществ.
Круговорот углерода. Углерод существует в природе во многих формах, в том числе в составе органических соединений. Неорганическое вещество, лежащее в основе биогенного круговорота этого элемента.— диоксид углерода (или углекислый газ, COj). В природе CCh входит в состав атмосферы, а также находится в растворенном состоянии в гидросфере. Включение углерода в состав органических веществ происходит в процессе фотосинтеза, в результате которого на основе CCh и H2O образуются сахара. В дальнейшем другие процессы биосинтеза преобразуют эти углеводы в более сложные (крахмал, гликоген), а также в протеиды, липиды и др. Все эти соединения не только формируют ткани фотосинтезирующих организмов, но и служат источником органических веществ для животных и незеленых растений.
В процессе дыхания все организмы окисляют сложные органические вещества: конечный продукт этого процесса, CCh, выводится во внешнюю среду, где вновь может вовлекаться в процесс фотосинтеза.
Углеродсодержащие органические соединения тканей живых организмов после их смерти подвергаются биологическому разложению организмами-редуцентами, в результате чего углерод в форме углекислоты вновь поступает в круговорот. Этот процесс составляет сущность так называемого почвенного дыхания.
При определенных условиях в почве разложение накапливающихся мйртвых остатков идет замедленным темпом — через образование сапрофагами (животными и микроорганизмами) гумуса, минерализация которого воздействием грибов и бактерий может идти с различной, в том числе и с низкой, скоростью. В некоторых случаях цепь разложения органического вещества бывает неполной. В частности, деятельность сапрофагов может подавляться недостатком кислорода или повышенной кислотностью. В этом случае органические остатки накапливаются в виде торфа; углерод не высвобождается и круговорот приостанавливается. Аналогичные ситуации возникали и в прошлые геологические эпохи, о чем свидетельствуют отложения каменного угля и нефти.
В гидросфере приостановка круговорота углерода связана с включением CCh в состав CaCOi в виде известняков, мела, кораллов. В этом случае углерод выключается из круговорота на целые геологические эпохи. Лишь поднятие органогенных пород над уровнем моря приводит к возобновлению круговорота через выщелачивание известняков атмосферными осадками, а также биогенным путем —действием лишайников, корней растений.
Круговорот азота. Главный источник азота органических соединений — молекулярный азот в составе атмосферы. Переход его в доступные живым организмам соединения может осуществляться разными путями. Так, электрические разряды при грозах синтезируют из азота и кислорода воздуха оксиды азота, которые с дождевыми водами попадают в почву в форме селитры или азотной кислоты. Имеет место и фотохимическая фиксация азота.
Более важной формой усвоения азота является деятельность азот- фиксирующих микроорганизмов, синтезирующих сложные протеиды. Отмирая, они обогащают почву органическим азотом, который быстро минерализуется. Таким путем в почву ежегодно поступает около 25 кг азота на I га (для сравнения — путем фиксации азота разрядами молний —4—10 кг/га).
Наиболее эффективная фиксация азота осуществляется бактериями, формирующими симбиотические связи с бобовыми растениями. Образуемый ими органический азот диффундирует в ризосферу, а также включается в наземные органы растения-хозяина. Таким путем в наземных и подземных органах растений (например, клевера или люцерны) на I га накапливается за год 150—400 кг азота.
Существуют азотфиксирующие микроорганизмы, образующие симбиоз и с другими растениями. В водной среде и на очень влажной почве непосредственную фиксацию атмосферного азота осуществляют цианобактерии (способные также к фотосинтезу). Во всех этих случаях азот попадает в растения в форме нитратов. Эти соединения через корни и проводящие пути доставляются в листья, где используются для синтеза протеинов; последние служат основой азотного питания животных.
Экскреты и мертвые организмы составляют базу цепей питания организмов-сапрофагов, разлагающих органические соединения с постепенным превращением органических азотсодержащих веществ в неорганические. Конечным звеном этой редукционной цепи оказываются аммонифицирующие организмы, образующие аммиак NH3, который затем может войти в цикл нитрификации. Nitrosonionas окисляют его в нитриты, a Nitrobacter окисляют нитриты в нитраты. Таким образом цикл азота может быть продолжен.
В то же время происходит постоянное возвращение азота в атмосферу действием бактерий-денитрификаторов, которые разлагают нитраты до N2. Эти бактерии активны в почвах, богатых азотом и углеродом. Благодаря их деятельности ежегодно с I га почвы улетучивается до 50—60 кг азота.
Азот может выключаться из круговорота путем аккумуляции в глубоководных осадках океана. В известной мере это компенсируется выделением молекулярного N2 в составе вулканических газов.

Круговорот воды. Вода — необходимое вещество в составе любых живых организмов. Основная масса воды на планете сосредоточена в гидросфере. Испарение с поверхности водоемов представляет источник атмосферной влаги; конденсация ее вызывает осадки, с которыми в конце концов вода возвращается в океан. Этот процесс составляет большой круговорот воды на поверхности Земного шара.
В пределах отдельных экосистем осуществляются процессы, усложняющие большой круговорот и обеспечивающие его биологически важную часть. В процессе перехвата растительность способствует испарению в атмосферу части осадков раньше, чем они достигнут поверхности земли. Вода осадков, достигшая почвы, просачивается в нее и либо образует одну из форм почвенной влаги, либо присоединяется к поверхностному стоку; частично почвенная влага может по капиллярам подняться на поверхность и испариться. Из более глубоких слоев почвы влага всасывается корнями растений; часть ее достигает листьев и транспирируется в атмосферу.
Эвапотранспирация — это суммарная отдача воды из экосистемы в атмосферу. Она включает как физически испаряемую воду, так и влагу, транспирируемую растениями. Уровень транспирации различен для разных видов и в разных ландшафтно-климатических зонах.
Если количество воды, просочившейся в почву, превышает ее влагоемкость, она достигает уровня грунтовых вод и входит в их состав. Подземный сток связывает почвенную влагу с гидросферой.
Таким образом, для круговорота.воды в пределах экосистем наиболее важны процессы перехвата, эвапотранспирации, инфильтрации и стока.
В целом круговорот воды характеризуется тем, iTro в отличие от VtViерода, азота и других элементов вода не накапливается и не связывается в живых организмах, а проходит через экосистемы почти без потерь; на формирование биомассы экосистемы используется лишь около I % воды, выпадающей с осадками.
Круговорот фосфора. В природе фосфор в больших количествах содержится в ряде горных пород. В процессе разрушения этих пород он попадает в наземные экосистемы или выщелачивается осадками и в конце концов оказывается в гидросфере. В обоих случаях этот элемент вступает в пишевые цепи. В большинстве случаев организмы-редуценты минерализуют органические вещества, содержащие фосфор, в неорганические фосфаты, которые вновь могут быть использованы растениями и таким образом снова вовлекаются в круговорот.
В океане часть фосфатов с отмершими органическими остатками попадает в глубинные осадки и накапливается там, выключаясь из круговорота. Процесс естественного круговорота фосфора в современных условиях интенсифицируется применением в сельском хозяйстве фосфорных удобрений, источником которых служат залежи минеральных фосфатов. Эго может быть поводом для тревоги, поскольку соли фосфора при таком использовании быстро выщелачиваются, а масштабы эксплуатации минеральных ресурсов все время растут, составляя в настоящее время около 2 млн. т/год.
Круговорот серы. Сера попадает в почву в результате естественного разложения некоторых горных пород (серный колчедан FeS2, медный колчедан CuFeS2), а также как продукт разложения органических веществ (главным образом растительного происхождения). Через корневые системы сера поступает в растения, в организме которых синтезируются содержащие этот элемент аминокислоты цистин, цис- теин, метионин. В организме животных сера содержится в очень малых количествах и попадает в них с кормом.
Сера из органических соединений попадает в почву благодаря разложению мертвых органических остатков микроорганизмами. В этом процессе органическая сера может быть восстановлена в H2S и минеральную серу или же окислена в сульфаты, которые поглощаются корнями растений, т. е. вновь вступают в круговорот. В наше время в круговорот вовлекается и сера промышленного происхождения (дымы), переносимая с дождевой водой.
Круговорот биогенных катионов. В метаболических процессах живых организмов необходимое участие принимают различные катионы. Некоторые из них содержатся в довольно значительных количествах и соответственно относятся к категории макроэлементов. Таковы натрий, калий, кальций, магний. Другие содержатся в малых количествах (миллионные доли сухого вещества), но тем не менее жизненно необходимы. Это катионы железа, цинка, меди, марганца и др., относимые к микроэлементам.
Главным источником биогенных катионов на суше служит почва, в которую они поступают в процессах разрушения горных пород. Через корневую систему они попадают в растения, а в составе растительных тканей — в организмы растительноядных животных и высшие звенья пищевых цепей. Частично животные могут получать эти элементы и прямо из почвы (процесс солонцевания). Минерализация экскрементов и мертвых организмов возвращает биогенные элементы в почву и делает их доступными для включения в повторный круговорот.
Этот простой цикл нарушается выносом биогенных элементов с поверхностным стоком в реки и, наконец, в моря. Выщелачивание дождевыми водами приводит к деградации коллоидального абсорбирующего комплекса и к ослаблению корневых систем растений. Особенно заметно этот процесс проявляется во влажном климате; в умеренной зоне это приводит к оподзоливанию почв. В сельском хозяйстве вынос биогенных элементов при уборке урожая неизбежен; компенсация его внесением органических и минеральных удобрений решает проблему лишь частично.
<< | >>
Источник: Шилов И.А.. Экология: Учеб. для биол. и мед. спец. вузов. 1998

Еще по теме БИОГЕННЫЙ КРУГОВОРОТ:

  1. КРУГОВОРОТЫ БИОГЕННЫХ ЭЛЕМЕНТОВ И ИХ МОДИФИКАЦИЯ.
  2. МЕТОДИКА ОПРЕДЕЛЕНИЯ ТОКСИЧНЫХ КОМПОНЕНТОВ В ПОЧВАХ Методика расчета выноса биогенных веществ в агроэкосистемах
  3. III. Биогенная миграция химических элементов и биогеохимические принципы.
  4. 2.3. Законы биогенной миграции атомов и необратимости эволюции, законы экологии Б. Коммонера
  5. Глава 11 Круговороты в биосфере
  6. Круговорот углерода
  7. 12.6. Круговороты веществ
  8. ГЛОБАЛЬНЫЙ БИОЛОГИЧЕСКИЙ КРУГОВОРОТ
  9. КРУГОВОРОТЫ ГАЗООБРАЗНОГО И ОСАДОЧНОГО ЦИКЛОВ
  10. Круговорот фосфора
  11. КРУГОВОРОТ ВОДЫ
  12. 7.3. Круговороты веществ в биосфере
  13. II.2. Круговороты веществ и их нарушение человеком
  14. Круговорот воды
  15. КРУГОВОРОТ КИСЛОРОДА
  16. Круговорот веществ и биогеохимические циклы важнейших химических элементов в биосфере