Космическая съемка: методы и возможности


Сигнал «бип-бип...» первого советского спутника 4 октября 1957 г. возвестил о начале новой, космической эры в истории человечества. А спустя почти четыре года, 12 апреля 1961 г. Юрий Алексеевич Гагарин совершил первый полет человека в космос, взглянув на Землю со стороны, и стал зачинателем ее изучения с орбиты.
6 и 7 августа того же года Герман Степанович Титов, 17 раз обогнув планету, сделал несколько снимков ее поверхности,— с этого началась планомерная космическая фотосъемка.
С тех пор количество дистанционных наблюдений растет лавинообразно; появились разнообразные фотографические и нефотографические системы, в том числе многозональные фотокамеры, телевизионные камеры со специальной передающей электронно-лучевой трубкой (видиконом), инфракрасные сканирующие радиометры[XXXIII], микроволновые радиометры для радиотепловой съемки, различные радары для активного зондирования (т. е. посылающие сигналы и регистрирующие их отражение от поверхности Земли). Значительно возросло и количество космических летательных аппаратов — искусственные спутники, орбитальные станции и пилотируемые корабли. Передаваемая ими обширная и разнообразная информация используется в ряде отраслей знания, включая такие науки о Земле, как геоморфология и геология, океанология и гидрография. В результате возникло новое научное направление — космическое землеведение, изучающее закономерности состава и строения геосферы, в частности рельеф и гидрографию суши, акватории океанов и морей.
Информация о любом уголке Земли, получаемая с помощью космических методов землеведения, характеризуется уникальностью, обзорностью и относительной дешевизной на единицу исследуемой площади, большой достоверностью и оперативностью, может повторяться с требуемой периодичностью или быть практически непрерывной. Космические методы позволяют выявить частоту нахожде
ния, ритмичность и силу природных процессов глобального, зонального, регионального и локального характера. С их помощью удается исследовать взаимосвязь всех составных частей геосферы и создавать карты слабо изученных в топографическом отношении субтропических и тропических областей. Наконец, эти методы дают возможность в короткие сроки получить снимки огромных территорий и выявить единство пространственно разобщенных крупных элементов рельефа — гигантских кольцевых и линейных структур. Ранее существование некоторых лишь предполагалось, в лучшем случае недооценивалось, многие же совершенно не были известны. Ныне уже ни у кого не вызывает сомнений, что они имеют самостоятельное значение и определяют основные черты строения земной поверхности.
<< | >>
Источник: И.П. МАГИДОВИЧ, В. И. МАГИДОВИЧ. Очерки по истории географических открытий Новейшие географические открытия и исследования (1917 — 1985 гг.) Издание третье, переработанное и дополненное. 1986

Еще по теме Космическая съемка: методы и возможности:

  1. Тахеометрическая съемка
  2.              Съемка местности
  3. Теодолитная съемка Общие требования
  4. Съемка ситуации и рельефа
  5.             СЪЕМКА МЕСТНОСТИ
  6. ГЛАВА 6. ТОПОГРАФИЧЕСКИЕ СЪЕМКИ
  7. ГЛАВА ТРИНАДЦАТАЯ [Возможное и силлогизмы о возможно присущем]
  8. Опасные космические явления и процессы
  9. Послевоенные съемки Земли Франца-Иосифа и Северной Земли
  10. Простые и сложные космические раздражители
  11. КОСМИЧЕСКОЕ ПРОСТРАНСТВО
  12. История человечества и космические циклы
  13. Степени свободы человека в обществе космического масштаба.
  14. НЕОБХОДИМОСТЬ КОСМИЧЕСКОЙ ТОЧКИ ЗРЕНИЯ
  15. Глава 15. КОСМИЧЕСКИЙ ТАНЕЦ