ЛИТЕРАТУРА

Блэкберн С. Профессор чего угодно II Гуманитарные науки в Сибири. — 2002. —№3.

Витгенштейн JI. Философские исследования. 201 // Философские работы. — М.: Гнозис, 1994.

Гедель К. Расселовская математическая логика II Рассел Б.

Ввведение в математическую философию. — М.: Гнозис, 1996.

Карнап Р. Значение и необходимость. — М.: Мир, 1959.

Клайн М. Математика: утрата определенности. — М.: Мир, 1984.

Платон. Государство. Соч.: В 3 т. — М.: Мысль, 1971. — Т. 3.

Проблемно-ориентированный подход к науке / Отв. ред. В.В. Целищев. — Новосибирск: Наука, 2001.

Рассел Б. Введение в математическую философию / Пер. В.В. Целище- ва. — М.: Гнозис, 1996.

Рассел Б. История западной философии. — Новосибирск: Изд-во НГУ, 1997.

Рассел Б. Мудрость Запада. — М.: Республика, 1998.

Рассел Б. Проблемы философии / Пер. В.В. Целищева. — Новосибирск: Наука, 2001.

Френкель А., Бар-Хиллел И. Основания теории множеств. — М.: Мир, 1966.

Хакинг Я. Представление и вмешательство. — М.: Гнозис, 1998.

Хао Ван. Процесс и существование И Математическая логика и ее применение. — М., 1965.

Целищев В.В. Логическая истина и эмпиризм. — Новосибирск: Наука, 1974.

Целищев В.В. Логика существования. — Новосибирск: Наука, 1975.

Целищев В.В. Язык второго порядка и проблемно-ориентированный подход к основаниям математики — 1 // Философия науки. — 2001. — № 1(9). —С. 76—90.

Целищев В.В. Математика и философия: технические детали и философские интерпретации II Философия науки. — 2002. — № 2(13). — С. 27—43.

Целищев В.В. Поиски новой философии математики II Философия науки. — 2002. — № 3(11). — С. 135—147. Целищев В.В., Бессонов А.В. Две интерпретации логических систем. —

Новосибирск: Наука, 1979. Целищев В.В. Петров В.В. Философские проблемы логики. — М.: Высш. шк., 1982.

Aczel P. Non-Well-Founded Sets. — Stanford, 1988.

Anderson D. What Is the Model-theoretic Argument? II J. Philosophy. —

1993. — Vol. 90, N 6. — P. 312—313. Anderson F. Some Correction to Godel's Ontological Proof // Faith and

Philosophy. — 1990. — Vol. 7, N 3, July. Azzouni J. Metaphysical Myths, Mathematical Practice. — Cambridge:

University Press, 1994. Balaguer M. Platonism and Antiplatonism in Mathematics. — Oxford:

University Press, 1998. Barrow J. Pi in the Sky. — Oxford: Clarendon Press, 1992. Bays T. On Putnam and His Models II J. Philosophy. — 2001. — Vol. 98, N7.

Benacerraf P. What Numbers Could Not Be II Philos. Rev. — 1965. — Vol. 74, N 1.

Benacerraf P. Mathematical Truth II J. Philosophy. — 1973.

Benacerraf P. Skolem and Sceptic II Proceedings of Aristotelian Society. —

1985. — Suppl. vol. 59. Benacerraf P. What Mathematical Truth Could not Be II Philosophy of

Mathematics Today. / Ed. M. Schirn. — Oxford, 1998. Bernays P. Platonism in Mathematics II Philosophy of Mathematics. / Ed.

P. Benacerraf, H. Putnam. — Englewood Cliffs: Prentice-Hall, 1964. Beth E. Mathematical Thought. — Dordrecht: Reidel, 1965. Bishop E. Foundations of Constructive Analysis. —N.Y.: McGraw-Hill, 1967. Boolos G. The Iterative Conception of Set II J. Philosophy. — 1971. — Vol. 68.

Boolos G. To Be Is to Be a Value of Variable II J. Philosophy. — 1975. — Vol.

72. — P. 509—527. Boolos G. On Second-Order Logic II J. Philosophy. — 1984. — Vol. 81.— P. 54—72.

Boolos G. The consistency of Frege's Foundations of Arithmetic II On Being

and Saying / Ed. J. Thompson. — Cambridge: University Press, 1987. Bostock D. On Motivating Higher-Order Logic И Philosophical Logic. / Ed.

T. Smiley. — Oxford: University Press, 1998. Cantor G. Gesammelte Abhandlungen / Ed. A. Fraenkel and E. Zermelo. — Berlin, 1932.

Cantor G. Contributions to the Founding of the Theory of Transfinite

Numbers. — N.Y.: Open Court, 1955. Chihara Ch. Constructibility and Mathematical Existence. — Oxford:

University Press, 1990. Cohen P. Set Theory and the Continuum Hypothesis. — Benjamin; Massachusetts, 1966.

Colyvan М. The Indispensability of Mathematics. — Oxford: University Press, 2001.

Corcoran J. Gaps between Logical Theory and Mathematical practice II The Methodological Unity of Science / Ed. M. Bunge. — Dordrecht: D. Reidel. — P. 23—50.

Curry H. Outlines of a Formalist Philosophy of Mathematics. — Amsterdam, 1970.

Dauben J. George Cantor. — Princeton: University Press, 1979.

Davis Ph., Hersh R. The Mathematical Experience. — Penguin, 1983.

Douven I. Putnam's Model-Theoretic Argument Reconstrued II J. Philosophy. — 1999. — Vol. 96, N 9. —P. 483.

Field H. Science without Numbers.— Princeton: University Press, 1980.

Field H. Is Mathematical Knowledge Just Logical Knowledge? II Philos. Rev. — 1984. — Vol. 93, N 4.

Field H. On Conservativeness and Incompleteness II J. Philosophy. — 1985. — Vol. 82. — P. 239—60.

Fraenkel A., Bar-Hillel Y., Levi A. Foundations of Set Theory. — 2-nd ed. — Amsterdam, 1973.

Fuller S. Thomas Kuhn: A Philosophical History for Our Times. — Chicago: University Press, 2001.

George A. Skolem and Lewenheim — Skolem Theorem: A Case Study of Philosophical Significance of mathematical Results II History and Philosophy of Logic. — 1985. — N 6.

Godel K. What is Cantor's Continuum Problem? II Philosophy of Mathematics / Ed. P. Benacerraf, H. Putnam. — Englewood Cliffs: Prentice- Hall, 1964.

Goldman A.I. A Causal Theory of Knowledge II Essays on Knowledge and Justification / Ed. G. Pappas, M. Swain. — Cornell: University Press, 1978.

Hacking I. The Social Construction of What? — Harvard: University Press, 1999.

Hacking J. What Mathematics Has Done to Some and Only Some Philosophers / /Mathematics and Necessity/Ed. T. Smiley. —Oxford: University Press, 2000.

Hale B. Abstract Objects. — Basil: Blackwell, 1987.

Hale B. and Wright C. Putnam's Model-Theoretic Argument II Companion to Philosophy of Language. — Blackwell, 1997.

Halett M. Cantorain Set Theory and Limitation of Size. — Oxford: University Press, 1984. — P. 32.

Hart W.D. Review of Mathematical Knowledge by M. Steiner. — Ithaka: Cornell University Press, 1975 // J. Philosophy. — 1977. — Vol. 74, N 2, febr.

Hays J. The battle of the Frog and the Mouse (from the Fables of Aleph) II Mathematical Intelligencer.

— 1984. — Vol. 6.

Hersh R. Mathematics has a Front and a Back II Synthese 88, 1991.

Hersh R. A Fresh Winds in the Philosophy of Mathematics II Amer. Math. Monthly. — 1995. — Aug.-Sept. — P. 590—591.

Hersh R. What is Mathematics, Really?— Oxford: University Press, 1997.

Higginbotham J. On High-Order Logic and Natural language II Philosophical Logic / Ed. T. Smiley. — Oxford: University Press, 1998.

Hintikka J. Logic, Language Games and Information. — Oxford: Clarendon Press, 1973.

Hintikka Ja. The Principles of Mathematics Revisited. — Cambridge: University Press, 1996.

Hintikka Ja. Lingua Universalis vs Calculus Ratiocinator. — Dordrecht: Kluwer Academic Publishers, 1997.

Jane I. A Critical Appraisal of Second-Order Logic И History and Philosophy of Logic. — 1993. — Vol. 14.

Kitcher Ph. The Nature of Mathematical Knowledge. — Oxford: University Press, 1983.

Klenk V. Intended Models and Lewenheim-Skolem Theorem II J. Philos. Logic. — 1976. — N 5. — P. 475—489.

Korner S. The philosophy of Mathematics. — L.: Hutchinson, 1960.

Kreisel G. Der unheivolle Einbruch der Logic in die Mathematik II Acta Philosophica Fennica. — Vol. 28, N 1—3.

Kripke S. Wittgenstein on Rules and Private Language. — N.Y.: Blackwell, 1982.

Lavine Sh. Understanding the Infinite. — Cambridge: Harvard University Press, 1994.

Maddy P. Believing Axioms. I // J. Symbolic Logic. — 1988. — Vol. 53.

Maddy P. Believing the Axioms. II // J. Symbolic Logic. — 1988. — Vol. 53, N 3. — P. 736—764.

Maddy P. Mathematical Realism II Midwest Studies in Philosophy. — 1988. — Vol. 12. — P. 275.

Maddy P. Realism in Mathematics. — Oxford: University Press, 1990.

Maddy P. Philosophy of Mathematics: Prospects for the 1990s II Synthese 88,— 1991. — P. 155—164.

Maddy P. Naturalism in Mathematics.—- Oxford: University Press, 1997.

Martin D. Hilbert 's First Problem: The Continuum Hypothesis II Proceedings of Symposia in Pure mathematics. — 1976. — Vol. 28.

Martin R. Intension and Decision. — N.Y., 1964.

Moore G. Beyond First-Order Logic: The Historical Interplay between Mathematical Logic and Axiomatic Set Theory II History and Philosophy of Logic. — 1980, —Vol. 1.

Moore G. Zermelo's Axiom of Choice. — Springer, 1982.

Moschovakis Y. Descriptive Set Theory. — Amsterdam: North Holland, 1980.

Mostowski A. Thirty Years of Foundational Studies // Acta Philosophica Fennica, Fasc. XVII. — Helsinki, 1965.

Passmore J. Recent Philosophers. — N.Y.: Open Court, 1991.

Penrose R. The Emperor's New Mind. — L.: Vintage, 1990.

Philosophy of Mathematics / Eds. Benacerraf P., Putnam H. — Englewood Cliffs: Prentice-Hall, 1964.

Philosophy of Mathematics Today I Ed. M. Schirn. — Oxford, 1998.

Putnam H. Review of the Concept of a Person II Philosophical Papers. Mind, Language and Reality. — Cambridge: University Press, 1975. — Vol. 2.

Putnam H. Models and Reality И J. Symbolic Logic. — 1980. — Vol. 45, N 3.

Putnam H. Reason, Truth, and History. — Cambridge, 1982.

Quine W.V.O. Set Theory and Its Logic. — Harvard: University Press, 1963.

Quine W. V.O. Word and Object. — Cambridge: University Press, 1964.

Quine W.V.O. Epistemology Naturalized II Ontological Relativity and Other Essays. — Harvard: University Press, 1969.

Quine W.V.O. Philosophy of Logic. — Englewood Cliffs: Prentice-Hall, 1970.

Reed S. Thinking about logic. — Oxford: University Press, 1994.

Resnik M. Mathematics as a Science of Patterns. — Oxford: Clarendon Press, 1997.

Rota G.-C. Mathematics and Philosophy: The Story of Misunderstanding И Review of Metaphysics. — 1990. — Vol. 44, N 174, Dec.

Rota G.-C. The Pernicious Influence of Mathematics upon Philosophy II Synthese 88,— 1991,— P. 165—178.

Rucker R. Infinity and the Mind. — Bantam Books, 1983.

Russell B. Principles of Mathematics. — N.Y., 1903.

Russell B. Mathematics and Metaphysicians II Mysticism and Logic, 1957.

Russell B. On Some Difficulties in the Theory of Transfinite Numbers and Order Types II Essays in Analysis / Ed. D. Lackey.—N.Y., 1974.—P. 153.

Scott D. Foreword to J. Bell, Bolean -Valued Models and Independence Proofs in Set Theory. — Oxford: University Press, 1977. — P. xii.

Shapiro S. Mathematics and Reality II Philosophy of Science. — 1983.— Vol. 50. — P. 523—548.

Shapiro S. Second-order Logic, Foundations, and Rules II J. Philosophy. — 1990.

Shapiro S. Foundations without Foundationalism: A Case for Second-order Logic.— Oxford: University Press, 1991.

Shapiro S. Mathematics and Philosophy of Mathematics II Phiiosophia Mathematica. — 1994. — Vol. 2, N 3.

Shapiro S. Philosophy of Mathematics. Structure and Ontology. — Oxford: University Press, 1997.

Skolem T. Einige Bemerkungen zur aximatischen Begrundung der Mengelehre //From Frege to Godel / Ed. van Heijenoort. — Cambridge, 1967.

Skolem T. Some Remarks on Axiomatized Set Theory И From Frege to Godel / Heijenoort J., van. — Harvard: University Press, 1967.

Skolem T. Sur la Portee du Theoreme de Lewenheim — Skolem II Skolem T. Selected Works in Logic / Ed. E.J. Fenstad. — Universitetsforlaget, 1970.— P. 468.

Sluga H. Frege Against Booleans II Notre Dame Journal of Formal Logic. — 1987. — Vol. 28. — P. 80—98. Takeuti G. Two Applications of Logic to Mathematics. — Princeton: University Press, 1977.

Tappenden J. Recent Works in Philosophy of Mathematics II J. Philosophy. —

2001. — Vol. 97. — P. 488—497. Tarski A. Remarks on Skolem II Skolem T. Selected Works in Logic. — Oslo, 1970. >

Tiles M. The Philosophy of Set Theory: An Historical Introduction to Cantorb Paradise. — Basil: Blackwell, 1989. ' >

Velleman D. Letter of 28 March 1991. Internet FOM. Wang Hao. From Mathematics to Philosophy. — L., 1974. • s

Whitehead A.N. Principia Mathematica. — Cambridge: University Press, 1910. 1

Wright C. Frege's Conception of Numbers as Objects. — Aberdeen: University Press, 1983. t

Wright C. Skolem and Sceptic II Proceedings of Aristotelian Society. —

1985. —Suppl. vol. 59. Zermelo E. Investigations in the Foundations of Set Theory. 1908 // Front Frege to Godel / Ed. van Heijenort J.— Harvard: "University Press, 1967:'

<< |
Источник: Целищев В.В.. Философия математики. 4.1.— Новосибирск: Наука,. —212 с.. 2002

Еще по теме ЛИТЕРАТУРА:

  1. Рекомендуемая литература Литература ко всем разделам*
  2. Список литературы
  3. Литература
  4. Литература
  5. 4. Литература
  6. Литература
  7. Литература
  8. СОЦИОЛОГИЯ литературы
  9. Список литературы
  10. Литература
  11. АРАБСКАЯ ЛИТЕРАТУРА
  12. Рекомендуемая литература
  13. ЛИТЕРАТУРА