РАДИАЦИОННО-ОПАСНЫЕ ОБЪЕКТЫ (P00) Основные опасности при авариях на Р00


Радиационно-опасными называют объекты народного хозяйства, использующие в своей деятельности источники ионизирующего излучения.
В настоящее время почти в 30 странах мира эксплуатируется около 450 атомных энергоблоков (общая мощность более 350 ГВт), из них 46 (1992 г) в странах СНГ (общая мощность более 30 МВт). Общее количество вырабатываемой атомными станциями электроэнергии в мире составляет около 20%, в Европе — почти 35%.
За всю историю атомной энергетики (с 1954 г) во всем мире было зарегистрировано более 300 аварийных ситуаций (за исключением СССР). В СССР, кроме аварии на ЧАЭС, другие аварии были неизвестны. Наиболее крупные выбросы РВ приводятся в таблице 23 [32].
Кроме опасности, которые создают аварии на АЭС, существуют еще многие реальные источники радиоактивного заражения. Они непосредственно связаны с добычей урана, его обогащением, переработкой, транспортировкой, хранением и захоронением отходов. Опасными являются многочисленные отрасли науки и промышленности, использующие изотопы: изотопная диагностика, рентгеновское обследование больных, рентгеновская оценка качества технических изделий; радиоактивными иногда являются некоторые строительные материалы.
В соответствии с вышеизложенным Минздравом России в 1999 г. были утверждены нормы радиационной безопасности (НРБ-99) на основании следующих нормативных документов: Федеральный закон «О радиационной безопасности населения» № 3-ФЗ от 09.01.96 г.; Федеральный закон «О санитарно-эпидемиологическом благополучии населения» № 52-ФЗ от 30.03.99 г.; Федеральный закон

Таблица 23
Выбросы РВ, представляющие угрозу для населения

Год, место

Причина

Активность, M Rh

Последствия

1957,
Южный Урал

Взрыв
хранилища с высокоактивными отходами

20,0

Загрязнено 235
ТЫС. KM2
территории

1957,
Англия,
Уиндскейл

Сгорание графита во время отжига и повреждения твэлов
/>0,03
PA облако распространилось на север до Норвегии и на запад до Вены

1945-1989

Произведено 1820 ядерных взрывов; из них 483 в атмосфере

40,0 по
Cs137 и Sr90

Загрязнение атмосферы и по следу облака

1964

Авария спутника с ЯЭУ


70% активности выпало в Южном полушарии

1966,
Испания

Разброс ядерного топлива двух водородных бомб


Точные сведения отсутствуют

1979, США

Срыв предохранительной мембраны первого контура тепло-носителя

0,043

Выброс 22,7 тыс. тонн загрязненной воды, 10% PA веществ выпало в атмосферу

1986, СССР, Чернобыль

Взрыв и пожар четвертого блока

50

Несоизмеримы со всеми
предыдущими


«Об использовании атомной энергии» № 170-ФЗ от 21.11.95 г.; Закон РСФСР «Об охране окружающей природной среды» № 2060-1 от 19.12.91 г.; Международные основные нормы безопасности для защиты от ионизирующих излучений и безопасности источников излучений, принятые совместно: Продовольственной и сельскохозяйственной организацией Объединенных Наций; Международным агентством по атомной энергии; Международной организацией труда; Агентством по ядерной энергии организации экономического сотрудничества и развития; Панамериканской организацией здравоохранения и Всемирной организацией здравоохранения (серия безопасности № 115), 1996 г.; Общие требования к построению, изложению и оформлению санитарно-гигиенических и эпидемиологических нормативных и методических документов. Руководство Р 1.1.004-94. Издание официальное. М. Госкомса- нэпиднадзор России. 1994 г.
Радиационные аварии по масштабам делятся на 3 типа: локальная авария — это авария, радиационные последствия которой ограничиваются одним зданием; местная авария — радиационные последствия ограничиваются зданиями и территорией АЭС; общая авария — радиационные последствия которой распространяются за территорию АЭС.
Основные поражающие факторы радиационных аварий: воздействие внешнего облучения (гамма- и рентгеновского; бета- и гаммаизлучения; гамма-нейтронного излучения и др.); внутреннее облучение от попавших в организм человека радионуклидов (альфа- и бетаизлучение); сочетанное радиационное воздействие как за счет внешних источников излучения, так и за счет внутреннего облучения; комбинированное воздействие как радиационных, так и нерадиационных факторов (механическая травма, термическая травма, химический ожог, интоксикация и др.).
После аварии на радиоактивном следе основным источником радиационной опасности является внешнее облучение. Ингаляционное поступление радионуклидов в организм практически исключено при правильном и своевременном применении средств защиты органов дыхания.

Внутреннее облучение развивается в результате поступления радионуклидов в организм с продуктами питания и с водой. В первые дни после аварии наиболее опасны радиоактивные изотопы йода, которые накапливаются щитовидной железой. Наибольшая концентрация изотопов йода обнаруживается в молоке, что особенно опасно для детей.
Через 2—3 месяца после аварии основным агентом внутреннего облучения становится радиоактивный цезий, проникновение которого в организм возможно с продуктами питания. В организм человека могут попасть и другие радиоактивные вещества (стронций, плутоний), загрязнение окружающей среды которыми имеет ограниченные масштабы.
Характер распределения радиоактивных веществ в организме: накопление в скелете (кальций, стронций, радий, плутоний); концентрируются в печени (церий, лантан, плутоний и др.); равномерно распределяются по органам и системам (тритий, углерод, инертные газы, цезий и др.); радиоактивный йод избирательно накапливается в щитовидной железе (около 30%), причем удельная активность ткани щитовидной железы может превышать активность других органов в 100—200 раз. На рис. 9 представлены места накопления радионуклидов в организме человека.
Основными параметрами регламентирующими ионизирующее излучение являются экспозиционная, поглощенная и эквивалентная дозы.
Экспозиционная доза — основана на ионизирующем действии излучения, это — количественная характеристика поля ионизирующего излучения. Единицей экспозиционной дозы является рентген (P). При дозе IPb I см3 воздуха образуется 2,08 • IO9 пар ионов. В международной системе СИ единицей дозы является кулон на килограмм (Кл/кг) • 1Кл/кг = 3876 Р.
Поглощенная доза — количество энергии, поглощенной единицей массы облучаемого вещества. Специальной единицей поглощенной дозы является 1 рад. В международной системе СИ — 1 Грей (Гр). 1 Гр = 100 рад.
Эквивалентная доза (ЭД)— единицей измерения является бэр. За 1 бэр принимается такая поглощенная доза любого вида ионизирующего излучения, которая при хроническом облучении вызывает такой же биологические эффект, что и 1 рад рентгеновского или гамма-излучения. В международной системе СИ единицей ЭД является Зиверт (Зв). 1 Зв равен 100 бэр.
Организм человека постоянно подвергается воздействию космических лучей и природных радиоактивных элементов, присутствующих в воздухе, почве, в тканях самого организма. Уровни природного излучения от всех источников в среднем соот

ветствуют 100 мбэр в год, но в отдельных районах — до 1000 мбэр в год.
В современных условиях человек сталкивается с превышением этого среднего уровня радиации. Для лиц, работающих в сфере действия ионизирующего излучения, установлены значения предельно допустимой дозы (ПДД) на все тело, которая при длительном воздействии не вызывает у человека нарушения общего состояния, а также функций кроветворения и воспроизводства. Для ионизирующего излучения установлена ПДД 5 бэр в год.
Международная комиссия по радиационной защите (МКРЗ) рекомендовала в качестве предельно допустимой дозы (ПДД) разового аварийного облучения 25 бэр и профессионального хронического облучения — до 5 бэр в год и установила в 10 раз меньшую дозу для ограниченных групп населения.
Для оценки отдаленных последствий действия излучения в потомстве учитывают возможность увеличения частоты мутаций. Доза излучения, вероятнее всего удваивающая частоту самопроизвольных мутаций, не превышает 100 бэр на поколение. Генетически значимые дозы для населения находятся в пределах 7—55 мбэр/год.
При общем внешнем облучении человека дозой в 150—400 рад развивается лучевая болезнь легкой и средней степени тяжести; при дозе 400—600 рад — тяжелая лучевая болезнь; облучение в дозе свыше 600 рад является абсолютно смертельным, если не используются меры профилактики и терапии.
При облучении дозами 100—1000 рад в основе поражения лежит так называемый костномозговой механизм развития лучевой болезни. При общем или локальном облучении живота в дозах 1000— 5000 рад — кишечный механизм развития лучевой болезни с превалированием токсемии.
При остром облучении в дозах более 5000 рад развивается молниеносная форма лучевой болезни. Возможна смерть «под лучом» при облучении в дозах более 20000 рад. При попадании в организм радионуклидов, происходит инкорпорирование радиоактивных веществ. Опасность инкорпорации определяется особенностями метаболизма, удельной активностью, путями поступления радионуклидов в организм. Наиболее опасны радионуклиды, имеющие большой период полураспада и плохо выводящиеся из организма, например радий-22б (226Ra), плутоний-239 (239Pn). На поражающий эффект влияет место депонирования радионуклидов: стронций- 89 (89Sr) и стронций-90 (90Sr) — кости; цезий-137 (137Cs) — мышцы. Места депонирования наиболее опасных радионуклидов представлены на рис. 9.
Особую опасность имеют быстро резобрирующиеся радионуклиды с равномерным распределением в организме, например тритий (3 Т) и полоний-210 (210Po).
Деятельность людей на зараженной местности значительно затруднена из-за медленного спада радиоактивности. Мероприятия по ограничению облучения населения регламентируются Нормами радиационной безопасности НРБ-99.
<< | >>
Источник: Хван Т.А., Хван П.А.. Безопасность жизнедеятельности. Серия «Высшее образование». Ростов н/Д: «Феникс». — 416 с.. 2004

Еще по теме РАДИАЦИОННО-ОПАСНЫЕ ОБЪЕКТЫ (P00) Основные опасности при авариях на Р00:

  1. Дорожко С. В.. Защита населения и хозяйственных объектов в чрезвычайных ситуациях. Радиационная безопасность: Уч. пособие в 3-х частях. Часть 1, 2001
  2. Грицевский И. М.. Работа учителя с учебником при подготовке к уроку истории: Кн. для учителя: Из опыта работы, 1987
  3. Судариков С. А.. Право интеллектуальной собственности, 2008
  4. Салова Т. Ю., Громова Н. Ю., Шкрабак В. С., Курмашев. Основы экологии. Аудит и экспертиза техники и технологии, 2004
  5. Е.В. Веницианов и др.. Экологический мониторинг: шаг за шагом, 2003
  6. Басин Е.Я.. Искусство и коммуникация (очерки из истории философско-эстетической мысли), 1999
  7. Горбунова Е.М., Ларионова М.В.. АНАЛИЗ РИСКОВ И ПОТЕНЦИАЛЬНЫХ ВОЗМОЖНОСТЕЙРОССИЙСКОГО ОБРАЗОВАНИЯВ УСЛОВИЯХПРИСОЕДИНЕНИЯК ВТО, 2007
  8. Сергеев М. Г.. Основы экологии: Учеб. пособие. Ч. 2., 2007
  9. Лега В. П.. История западной философии. Часть первая. Античность. Средневековье. Возрождение: учеб. пособие, 2009
  10. Тощенко Ж.Т.. Социология. Общий курс. – 2-е изд., доп. и перераб. – М.: Прометей: Юрайт-М,. – 511 с., 2001
  11. Е.В. Семенова. ИСТОРИЯ РОССИИ. Пособие для абитуриентов, 2000