Энергетический обмен
Энергия существует в природе в различных формах. Это прежде всего энергия солнечного света, а также химическая, тепловая и электрическая. Организмам энергия необходима для активного транспортирования веществ, для синтеза белков и иных биомолекул, для мышечных сокращений при пере-
метении в пространстве, для клеточного деления и т.
Первоисточником энергии в природе является Солнце, но его энергию могут использовать только фотосинтетики, а все остальные организмы могут получать эту энергию лишь опосредовано, т. е. в форме энергии химических связей между атомами органических соединений. При разрыве связей энергия может высвобождаться, но чаще всего она временно запасается в виде особо богатого энергией нуклеотида — аденозинтрифос- форной кислоты (АТФ) — используемого клеткой для всех дальнейших процессов жизнедеятельности.
Главная роль в энергетическом обмене клеток животных принадлежит дыхательному обмену или клеточному дыханию. Клеточное дыхание представляет собой процесс, в котором высокомолекулярные органические высокоэнергетические соединения, окисляясь распадаются на низкомолекулярные или неорганические соединения, бедные энергией. При окислении с участием кислорода дыхание называют аэробным, а без его участия — анаэробным.
Процесс потребления кислорода из среды обитания и возвращения в эту среду диоксида углерода называется газообменом организма с окружающей средой. Это иной процесс, отличный от клеточного дыхания; путать их нельзя.
Более половины энергии, ежедневно расходуемой человеком, затрачивается на мышечную работу. Запасы одних только углеводов могут удовлетворить энергетические потребности нашего организма в течение примерно 12 ч, тогда как человек среднего телосложения может обходиться без пищи, по крайней мере, в течение шести недель.
Животным, впадающим в зимнюю спячку и снижающим скорость метаболизма, накопленных летом запасов жира хватает на долгие месяцы. Последовательность расходования высокомолекулярных соединений в организме (на примере человека, рис. 2.3) следующая: прежде всего углеводы, затем жиры (у животных) или масла (у растений), и в последнюю очередь белки.
Выделение энергии, необходимой для любого процесса жизнедеятельности клетки, происходит при отщеплении от аденозинтрифосфорной кислоты, называемой также адено- зинтрифосфатом (АТФ), одной фосфатной группы (фосфата)
с образованием аденозиндифосфата (АДФ) в соответствии с уравнением

+ Фосфат + Энергия.
Структура строения аденозинфосфатов и схема процессов, протекающих при энергетическом обмене, показаны на рис. 2.4, где знаком «~» обозначены так называемые «богатые энергией» связи. При отщеплении от АДФ еще одной фосфатной группы образуется аденозинмонофосфат (АмФ).

Существенную роль в поддержании равновесия между разновидностями аденозинфосфорных кислот играет обратимая ферментативная реакция
Энергетический обмен клетки осуществляется в три этапа.
Подготовительный этап — сложные органические соединения распадаются на более простые: белки на аминокислоты, полисахариды на моносахариды и т. п.
Этап неполного окисления (анаэробное дыхание или брожение). Неполному окислению могут подвергаться глюкоза, жирные кислоты, аминокислоты. При этом главным источником энергии в клетке является глюкоза. При бескислородном окислении одной молекулы глюкозы (процесс гликолиза) из двух молекул АДФ образуются две молекулы АТФ. В процессе гликолиза для нужд клетки извлекается не более 10% энергии.
Этап полного расщепления (аэробное дыхание) протекает с обязательным участием кислорода. При дыхании последовательно проходит ряд ферментативных реакций. В условиях полного окисления, сопряженного с фосфорилированием АДФ до АТФ, недоокисленные продукты гликолиза отдают для нужд клетки оставшуюся в их химических связях энергию, которая аккумулируется в АТФ. Энергия АТФ превышает

Рис. 2.4. Структуры АТФ и АДФ (а), гидролиз АТФ (б) и рефосфорирова- ние АДФ в результате дыхательной активности (в): Ф — фосфатная группа
энергию АДФ на 30,6 кДж/моль, а энергию АМФ — на 2 • 30,6 = = 61,2 кДж/моль.
Запас АТФ в клетке невелик. Так, в мышце запаса АТФ хватает на 20—30 сокращений. Для нескольких тысяч сокращений и работы мышцы часами необходим непрерывный синтез АТФ. Один из способов образования АТФ в клетке заключается в переносе под действием ферментов высокоэнергетической фосфатной группы от какой-нибудь другой молекулы (например от дифосфоглицерата) на АДФ.
Для восполнения израсходованной АТФ используют энергию, освобождаемую в результате расщепления питательных веществ.
АТФ — единый и универсальный источник энергообеспечения
клетки.
Еще по теме Энергетический обмен:
- Обмен веществ и энергии при различных уровнях функциональной активности организма Основной обмен
- Энергетические линии
- Классификация единицы 1.Энергетические ресурсы
- 5.10. Энергетические ресурсы. Реальна пи угрозаэнергетического голода?
- 5.5. Энергетические и минеральные ресурсы
- Обмен веществ
- § 90. РЕШЕНИЕ ЭНЕРГЕТИЧЕСКОЙ ПРОБЛЕМЫ
- 16.3. Решение энергетической проблемы
- ТОПЛИВНО-ЭНЕРГЕТИЧЕСКИЙ КОМПЛЕКС
- Роль обмена веществ в обеспечении энергетических потребностей организма
-
Детская психология -
Общая экология -
Природопользование -
Социальная экология -
Экологический мониторинг -
Экология города и региона -
Экология человека -
-
Педагогика -
Cоциология -
БЖД -
Биология -
Горно-геологическая отрасль -
Гуманитарные науки -
Искусство и искусствоведение -
История -
Культурология -
Медицина -
Наноматериалы и нанотехнологии -
Науки о Земле -
Политология -
Право -
Психология -
Публицистика -
Религиоведение -
Учебный процесс -
Физика -
Философия -
Эзотерика -
Экология -
Экономика -
Языки и языкознание -