Влияние на организм человека электромагнитных полей и излучений (неионизирующих)


Электромагнитное поле (ЭМП) радиочастот характеризуется способностью нагревать материалы; распространяться в пространстве и отражаться от границы раздела двух сред; взаимодействовать с веществом, благодаря которой электромагнитные поля широко используются в различных отраслях народного хозяйства: промышленность, наука, техника, медицина, быт.
При оценке условий труда учитываются время воздействия ЭМП и характер облучения работающих.
Электромагнитные волны лишь частично поглощаются тканями биологического объекта, поэтому биологический эффект зависит от физических параметров ЭМП радиочастот: длины волны (частоты колебаний), интенсивности и режима излучения (непрерывный, прерывистый, импульсно-модулированный), продолжительности и характера облучения организма (постоянное, интермиттирующее), а также от площади облучаемой поверхности и анатомического строения органа или ткани. Степень поглощения энергии тканями зависит от их способности к ее отражению на границах раздела, определяемой содержанием воды в тканях и другими их особенностями. При воздействии ЭМП на биологический объект происходит преобразование электромагнитной энергии внешнего поля в тепловую, что сопровождается повышением температуры тела или локальным избирательным нагревом тканей, органов, клеток, особенно с плохой терморегуляцией (хрусталик, стекловидное тело, семенники и др.) Тепловой эффект зависит от интенсивности облучения.
Действие ЭМП радиочастот на центральную нервную систему при плотности потока энергии (ППЭ) более 1 мВт/см2 свидетельствует о ее высокой чувствительности к электромагнитным излучениям. Однако наблюдаемые реакции отличаются большой вариабельностью и фазным характером, включая условнорефлекторные и поведенческие реакции.
При воздействии ЭМП на животных наблюдаются многочисленные гормональные сдвиги, свидетельствующие о нарушении нервно-эндокринной регуляции по типу стресса: вовлекается гипоталамо-гипофизарно-адренокортикальная система, тормозится секреция гормонов роста и стимулируется выделение кортикостероидных гормонов, пролактина и т.д.
Изменения в крови наблюдаются, как правило, при ППЭ выше 10 мВт/см3, при меньших уровнях воздействия наблюдаются фазовые изменения количества лейкоцитов, эритроцитов и гемоглобина (чаще лейкоцитоз, повышение эритроцитов и гемоглобина). При длительном воздействии ЭМП происходит физиологическая адаптация или ослабление иммунологических реакций.
Поражение глаз в виде помутнения хрусталика - катаракты является одним из наиболее характерных специфических последствий воздействия ЭМП в условиях производства. Помимо этого следует иметь в виду и возможность неблагоприятного воздействия ЭМП-облучения на сетчатку и другие анатомические образования зрительного анализатора.
Клинико-эпидемиологические исследования людей, подвергавшихся производственному воздействию СВЧ-облучения при интенсивности ниже 10 мВт/см2, показали отсутствие каких-либо проявлений катаракты.
Непосредственные наблюдения свидетельствуют о большом разнообразии жалоб и отмечаемых симптомов.
Воздействие ЭМП с уровнями, превышающими допустимые, могут приводить к изменениям функционального состояния центральной нервной и сердечно-сосудистой систем, нарушению обменных процессов и др. При воздействии значительных интенсивностей СВЧ могут возникать более или менее выраженные помутнения хрусталика глаза. Нередко отмечаются изменения в составе периферической крови. Начальные изменения в организме обратимы. При хроническом воздействии ЭМП изменения в организме могут прогрессировать и приводить к патологии с астеновегетативными, ангиодистоническими и диэнцефальными проявлениями или энцефалопатии с выраженными органическими симптомами.
Интенсивность электромагнитных полей радиочастот на рабочих местах персонала, проводящего работы с источниками ЭМП, и требования к проведению контроля регламентирует ГОСТ 12.1.006-84. Электромагнитные поля радиочастот. Допустимые уровни на рабочих местах и требования к проведению контроля.
ЭМП радиочастот в диапазоне частот 60 кГц-300 МГц оценивается напряженностью электрической и магнитной составляющих поля; в диапазоне частот 300 МГц- 300 ГГц - поверхностной плотностью потока энергии (ППЭ) излучения и создаваемой им энергетической нагрузкой (ЭН).
Максимальное значение ППЭпду не должно превышать 10 Вт/м2 (1000 мкВт/см2).
Средства и методы защиты от ЭМП делятся на три группы: организационные, инженерно-технические и лечебно-профилактические.
Организационные мероприятия предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭМП, создание санитарно-защитных зон вокруг антенных сооружений различного назначения.
Общие принципы, положенные в основу инженерно-технической защиты, сводятся к следующему: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; зашита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения. Для экранирования рабочего места используют различные типы экранов: отражающие и поглощающие.
В качестве средств индивидуальной защиты рекомендуется специальная одежда, выполненная из металлизированной ткани, и защитные очки.
Лечебно-профилактические мероприятия должны быть направлены прежде всего на раннее выявление нарушений в состоянии здоровья работающих. Для этой цели предусмотрены предварительные и периодические медицинские осмотры лиц, работающих в условиях воздействия СВЧ - 1 раз в 12 месяцев, УВЧ и ВЧ-диапазона - 1 раз в 24 месяца.
При выявлении симптомов, характерных для воздействия ЭМП, углубленное обследование и последующее лечение проводятся в соответствии с особенностями выявленной патологии.
Электрические поля токов промышленной частоты. Источниками электрических полей (ЭП) промышленной частоты являются линии электропередач высокого и сверхвысокого напряжения, открытые распределительные устройства (ОРУ).
Ремонт приводов, разъединителей, выключателей сигнальных цепей и другие работы выполняются непосредственно на оборудовании ОРУ в местах при повышенной напряженности электрического поля. В зависимости от характера выполняемой операции время облучения электрическим полем различной напряженности колеблется от нескольких минут до нескольких часов за рабочую смену.
При длительном хроническом воздействии ЭП возможны субъективные расстройства в виде жалоб невротического характера (чувство тяжести и головная боль в височной и затылочной областях, ухудшение памяти, повышенная утомляемость, ощущение вялости, разбитость, раздражительность, боли в области сердца, расстройства сна; угнетенное настроение, апатия, своеобразная депрессия с повышенной чувствительностью к яркому свету, резким звукам и другим раздражителям), проявляющиеся к концу рабочей смены. Расстройства в состоянии здоровья работающих, обусловленные функциональными нарушениями в деятельности нервной и сердечно-сосудистой систем астенического и асте- новегетативного характера, являются одним из первых проявлений профессиональной патологии.
Допустимые уровни напряженности электрических полей установлены в ГОСТ 12.1.002-84. Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах.
Стандарт устанавливает предельно допустимые уровни напряженности электрического поля частотой 50 Гц для персонала, обслуживающего электроустановки и находящегося в зоне влияния создаваемого ими ЭП, в зависимости от времени пребывания и требований к проведению контроля уровней напряженности ЭП на рабочих местах.
Предельно допустимый уровень напряженности воздействующего ЭП равен 25 кВ/м. Пребывание в ЭП напряженностью более 25 кВ/м без средств защиты не допускается.
Пребывание в ЭП напряженностью до 5 кВ/м включительно допускается в течение рабочего дня. При напряженности ЭП свыше 20 до 25 кВ/м время пребывания персонала в ЭП не должно превышать 10 мин.
Допустимое время пребывания в ЭП напряженностью свыше 5 до 20 кВ/м включительно, определяется по формуле: T = — - 2 .
E
где Т - допустимое время пребывания в ЭП при соответствующем уровне напряженности, ч; Е - напряженность воздействующего ЭП в контролируемой зоне, кВ/м.
Расчет допустимой напряженности в зависимости от времени пребывания в ЭП
производится по формуле: E = 5T0 + 2 .
Расчет по данной формуле допускается в пределах от 0,5 до 0,8 часов.
Допустимое время пребывания в ЭП может быть одноразово или дробно в течение рабочего дня. В остальное рабочее время напряженность ЭП не должна превышать кВ/м.
Требования ГОСТа действительны при условии исключения возможности воздействия электрических зарядов на персонал, а также при условии применения защитного заземления (ГОСТ 12.1.019-79) всех изолированных от земли предметов, конструкций, частей оборудования, машин и механизмов, к которым возможно прикосновение работающих в зоне влияния ЭП.
Средства защиты от электрического поля частотой 50 Гц: стационарные экранирующие устройства (козырьки, навесы, перегородки); переносные (передвижные) экранирующие средства защиты (инвентарные навесы,
палатки, перегородки, щиты, зонты, экраны и т. д.).
К индивидуальным средствам защиты относятся: защитный костюм - куртка и брюки, комбинезон, экранирующий головной убор - металлическая или пластмассовая каска для теплого времени года и шапка-ушанка с прокладкой из металлизированной ткани для холодного времени года; специальная обувь, имеющая электропроводящую резиновую подошву или выполненная целиком из электропроводящей резины.
Комплекс лечебно-профилактических мероприятий для работающих аналогичен требованиям как при действии ЭМП диапазона радиочастот.
Статическое электричество — это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ, материалов, изделий или на изолированных проводниках. Постоянное электростатическое поле (ЭСП) - это поле неподвижных зарядов, осуществляющее взаимодействие между ними. Возникновение зарядов статического электричества происходит при деформации, дроблении (разбрызгивании) веществ, относительном перемещении двух находящихся в контакте тел, слоев жидких и сыпучих материалов, при интенсивном перемешивании, кристаллизации, а также вследствие индукции.
ЭСП характеризуется напряженностью (Е), определяемой отношением силы, действующей в поле на точечный электрический заряд, к величине этого заряда. Единицей измерения напряженности ЭСП является вольт на метр (В/м).
Электрические поля создаются в энергетических установках и при электротехнологических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов) или стационарного электрического поля (электрическое поле постоянного тока).
В радиоэлектронной промышленности статическое электричество образуется при изготовлении, испытаниях, транспортировке и хранении полупроводниковых приборов и интегральных микросхем, в помещениях вычислительных центров, на участках множительной техника, а также в ряде других процессов, где применяются диэлектрические материалы, являясь побочным нежелательным фактором.
В химической промышленности при производстве пластических материалов и изделий из них также происходит образование электростатических зарядов и полей напряженностью 240-250 кВ/м.
При изготовлении гибких грампластинок в момент выхода пластинки из-под штампа создается ЭСП высокой напряженности (до 280 кВ/м). При обработке пластмассовых застежек и молний (насадка и закрепление ограничителя на молнии и спуск ленты с молнией в бункер) происходит трение ленты металлическими пластинками, между которыми она проходит, напряженность электростатического поля на рабочих местах может достигать 240 кВ/м.
Исследования биологических эффектов показали, что наиболее чувствительны к электростатическим полям нервная, сердечно-сосудистая, нейро-гуморальная и другие системы организма.
У людей, работающих в зоне воздействия электростатического поля, встречаются разнообразные жалобы: на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда. Склонность к «фобиям» обычно сочетается с повышенной эмоциональной возбудимостью.
Допустимые уровни напряженности электростатических полей установлены в ГОСТ 12.1.045-84. Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля.

Допустимые уровни напряженности электростатических полей зависят от времени пребывания на рабочих местах.
Предельно допустимый уровень напряженности электростатических полей (Епред) равен 60 кВ/м в 1 ч.
При напряженности электростатических полей менее 20 кВ/м время пребывания в электростатических полях не регламентируется.
В диапазоне напряженности от 20 до 60 кВ/м допустимое время пребывания персонала в электростатическом поле без средств защиты определяется по формуле:
S              X              2
Е пред
t доп              г-, I
^ Е факт
Е пред., Е факт - предполагаемое и фактическое значение напряженности электрического поля, кВ/м.
Применение средств защиты работающих обязательно в тех случаях, когда фактические уровни напряженности электростатических полей на рабочих местах превышают 60 кВ/м.
При выборе средств защиты от статического электричества (экранирование источника поля или рабочего места, применение нейтрализаторов статического электричества, ограничение времени работы и др.) должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещений и др., что определяет дифференцированный подход при разработке защитных мероприятий.
Одним из распространенных средств защиты от статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается: заземлением металлических и электропроводных элементов оборудования; увеличением поверхностной и объемной проводимости диэлектриков; установкой нейтрализаторов статического электричества.
Заземление проводится независимо от использования других методов защиты.
Более эффективным средством защиты является увеличение влажности воздуха до 65-75%, если позволяют условия технологического процесса.
В качестве индивидуальных средств защиты могут применяться антистатическая обувь, антистатический халат, заземляющие браслеты для защиты рук и другие средства, обеспечивающие электростатическое заземление тела человека.
Лазерное излучение. Лазер или оптический квантовый генератор - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.
Накачка, т. е. перевод атомов активной среды на верхний уровень, обеспечивается или посредством мощного источника света, или электрическим разрядом.
По степени опасности лазерного изучения для обслуживающего персонала лазеры подразделяются на четыре класса:
Классификация определяет специфику воздействия излучения на орган зрения и кожу. В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиции облучения.
Лазеры широко применяются в различных областях промышленности, науки, техники, связи, сельском хозяйстве, медицине, биологии и др. Расширение сферы их использования увеличивает контингент лиц, подвергающихся воздействию лазерного излучения, и выдвигает необходимость профилактики опасного и вредного действия этого фактора среды обитания.
Работа с лазерами в зависимости от конструкции, мощности, условий эксплуатации разнообразных лазерных систем и другого оборудования может сопровождаться воздействием на персонал неблагоприятных производственных факторов. Работа лазерных установок, как правило, сопровождается шумом. На фоне постоянного шума, который может достигать 70-80 дБ, имеют место звуковые импульсы с уровнем интенсивности 100-120 дБ, возникающие в результате перехода световой энергии в механическую в месте соприкосновения луча с обрабатываемой поверхностью или за счет работы механических затворов лазерных установок. Разряды ламп накачки, а также взаимодействие сс-луча с воздухом сопровождаются выделением озона и окислов азота.
Действие лазеров на организм зависит от параметров излучения (мощности и энергии излучения на единицу облучаемой поверхности, длины волны, длительности импульса, частоты следования импульсов, времени облучения, площади облучаемой поверхности), локализации воздействия и анатомо-физиологических особенностей облучаемых объектов. Энергия излучения лазеров в биологических объектах (ткань, орган) может претерпевать различные превращения и вызывать органические изменения в облучаемых тканях (первичные эффекты) и неспецифические изменения функционального характера (вторичные эффекты). При этом наблюдается сочетанное термическое и механическое действие на облучаемые структуры.
Эффект воздействия лазерного излучения на орган зрения в значительной степени зависит от длины волны и локализации воздействия. Выраженность морфологических изменений и клиническая картина расстройств функций зрения может быть от полной потери зрения (слепота) до инструментально выявляемых функциональных нарушений.
При применении лазеров большой мощности и расширении их практического использования возросла опасность случайного повреждения не только органа зрения, но и кожных покровов и даже внутренних органов
Классификация лазеров и лазерных систем:
Класс 1: Лазеры и лазерные системы малой мощности, которые не могут излучать уровень радиации, превышающие Максимально Разрешимое Облучение (MPE). Лазеры и лазерные системы Класса 1 не способны причинить повреждение человеческому глазу, и, следовательно, не подлежат контрольному эталонированию.
Класс 2: Видимые, маломощные лазеры и лазерные системы, которые способны причинить повреждение человеческому глазу в том случае, если смотреть непосредственно на лазер на протяжении длительного периода (более 15 минут).
Класс 3: Лазеры и лазерные системы средней мощности. Данный класс включает лазеры следующих классов:
Класс 3a: не представляют опасность, если смотреть на лазер невооруженным взглядом только на протяжении кратковременного периода. Лазеры могут представлять опасность, если смотреть на лазер с помощью собирающей оптики.
Класс 3b: представляют опасность, если смотреть непосредственно на лазер. Это же относится и к зеркальному отражению лазерного луча.
Класс 4: Лазеры и лазерные системы сильной мощности, которые способны причинить сильное повреждение человеческому глазу короткими излучениями (lt;0.25 с) прямого лазерного луча, а также зеркально или диффузно отраженного. Лазеры и лазерные системы данного класса способны причинить значительное повреждение на коже человека, а также оказать опасное воздействие на легко воспламеняющие и горючие материалы.
Предельно допустимые уровни лазерного излучения регламентированы Санитарными нормами и правилами устройства и эксплуатации лазеров № 5804-91, которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определять величины ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Нормируется и энергетическая экспозиция облучаемых тканей.
При использовании лазеров 2-3 классов для исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения.
Лазеры 4 класса опасности размещают в отдельных изолированных помещениях и обеспечивают дистанционным управлением их работой.
К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные очки, щитки, маски, снижающие облучения глаз до ПДУ.
Работающим с лазерами необходимы предварительные и периодические (1 раз в год) медицинские осмотры терапевта, невропатолога, окулиста.
Ультрафиолетовое излучение (УФ) представляет собой невидимое глазом электромагнитное излучение, занимающее в электромагнитном спектре промежуточное положение между светом и рентгеновским излучением.
УФ-лучи обладают способностью выдавать фотоэлектрический эффект, проявлять фотохимическую активность (развитие фотохимических реакции), вызывать люминесценцию и обладают значительной биологической активностью.
Биологическое действие УФ-лучей солнечного света проявляется прежде всего в их положительном влиянии на организм человека. Известно, что при длительном недостатке солнечного света возникают нарушения физиологического равновесия организма, развивается своеобразный симптомокомплекс, именуемый «световое голодание».
Наиболее часто следствием недостатка солнечного света являются авитаминоз В, ослабление защитных иммунобиологическях реакций организма, обострение хронических заболеваний, функциональные расстройства нервной системы.
УФ-облучение субэритемными и малыми эритемными дозами оказывает благоприятное стимулирующее действие на организм. Происходит повышение тонуса гипофизарно-надпочечниковой и симпатоадреналовой систем, активности ферментов и уровня неспецифического иммунитета, увеличивается секреция ряда гормонов. Наблюдается нормализация артериального давления, снижается уровень холестерина сыворотки и проницаемость капилляров, повышается фагоцитарная активность лейкоцитов; нормализуются все виды обмена.
Установлено, что под воздействием УФ-излучени повышается сопротивляемость организма, снижается заболеваемость, в частности простудными заболеваниями, возрастает устойчивость к охлаждению, снижается утомляемость, увеличивается работоспособность.
Для профилактики «ультрафиолетового дефицита» используют как солнечное излучение - инсоляция помещений, световоздушные ванны, солярии, так и УФ-облучение искусственными источниками.
УФ-излучение от производственных источников (электрические дуги, ртутнокварцевые горелки, автогенное пламя) может стать причиной острых и хронических поражений.
Наиболее подвержен действию УФ-излучения зрительный анализатор. Острые поражения глаз, так называемы электроофтальмии (фотоофтальмии), представляют собой острый конъюнктивит или кератоконъюнктивит. Проявляется заболевание ощущением постороннего тела или песка в глазах, светобоязнью, слезотечением, блефароспазом. Нередко обнаруживается эритема кожи лица и век. Заболевание длится до 2-3 суток.
Профилактические мероприятия по предупреждению электроофтальмий сводятся к применению светозащитных очков или щитков при электросварочных и других работах.
С хроническими поражениями связывают хронический конъюнктивит, блефарит, катаракту хрусталика.
Кожные поражения протекают в виде острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления с повышением температуры, ознобом, головными болями, диспепсическими явлениями. Классическим примером поражения кожи, вызванного УФ- излучением, служит солнечный ожог.
Хронические изменения кожных покровов, вызваны УФ-излучением, выражаются в «старении», развитии кератоза, атрофии эпидермиса, возможно развитие злокачественных новообразований.
Для защиты кожи от УФ-излучения используют защитную одежда противосолнеч- ные экраны (навесы и т. п.), специальные покровные кремы.
Важное гигиеническое значение имеет способность УФ-излучения производственных источников изменять газовый состав атмосферного воздуха вследствие его ионизации. При этом в воздухе образуются озон и оксиды азота. Эти газы, как известно, обладают высокой токсичностью и могут представлять большую опасность, особенно при выполнении сварочных работ, сопровождающихся УФ-излучением, в ограниченных, плохо проветриваемых помещениях или в замкнутых пространствах.
С целью профилактики отравлений окислами азота и озоном соответствующие помещения должны быть оборудованы местной или общеобменной вентиляцией, а при сварочных работах замкнутых объемах необходимо подавать свежий воздух непосредственно под щиток или шлем.
Интенсивность УФ-излучения на промышленных предприятиях установлена Санитарными нормами ультрафиолетового излучения в производственных помещениях № 4557-88.
Защитные меры включают средства отражения УФ-излучений, защитные экраны и средства индивидуальной защиты кожи и глаз.
Для защиты от повышенной инсоляции применяют различные типы защитных экранов. При этом они могут быть физическими и химическими, физические представляют собой разнообразные преграды, загораживающие или рассеивающие свет. Защитным действием обладают различные кремы, содержащие поглощающие ингредиенты, например, бензофенон.
Защитная одежда из поплина или других тканей должна иметь длинные рукава и капюшон. Глаза защищают специальными очками со стеклами, содержащими оксид свинца, но даже обычные стекла не пропускают УФ-лучи с длиной волны короче 315 нм.
<< | >>
Источник: Гриценко В.С.. Безопасность жизнедеятельности: Учебное пособие. 2004

Еще по теме Влияние на организм человека электромагнитных полей и излучений (неионизирующих):

  1. Ши пни Питер. Нубийцы. Могущественная цивилизация древней Африки, 2004
  2. Гальперин М. В.. Экологические основы природопользования, 2003
  3. Савельев А.Е.. Культура Древней Греции: Учеб, пособие. — М.: Высшая школа., 2008
  4. Момджян К.Х.. Введение в социальную философию, 1997
  5. Исаев Б., Баранов Н.. Современная российская политика: Учебное пособие. Для бакалавров, 2012
  6. В. Т. Харчева. Основы социологии / Москва , «Логос», 2001
  7. Тощенко Ж.Т.. Социология. Общий курс. – 2-е изд., доп. и перераб. – М.: Прометей: Юрайт-М,. – 511 с., 2001
  8. Е. М. ШТАЕРМАН. МОРАЛЬ И РЕЛИГИЯ, 1961
  9. Ницше Ф., Фрейд З., Фромм Э., Камю А., Сартр Ж.П.. Сумерки богов, 1989
  10. И.В. Волкова, Н.К. Волкова. Политология, 2009
  11. ОШО РАДЖНИШ. Мессия. Том I., 1986
  12. Басин Е.Я.. Искусство и коммуникация (очерки из истории философско-эстетической мысли), 1999
  13. Хендерсон Изабель. Пикты. Таинственные воины древней Шотландии, 2004
  14. Ишимова О.А.. Логопедическая работа в школе: пособие для учителей и методистов., 2010
  15. Суриков И. Е.. Очерки об историописании в классической Греции, 2011
  16. Бхагван Шри Раджниш. ЗА ПРЕДЕЛАМИ ПРОСВЕТЛЕНИЯ. Беседы, проведенные в Раджнишевском Международном университете мистицизма, 1986
  17. Фокин Ю.Г.. Преподавание и воспитание в высшей школе, 2010
  18. И. М. Кривогуз, М. А. Коган и др.. Очерки истории Германии с Древнейших времен до 1918, 1959
  19. Джон-Роджер, Питер Маквильямс. Жизнь 101, 1992