загрузка...

Антропогенное загрязнение атмосферы


Газовый состав атмосферы Земли обеспечивает условия для жизни и защищает все живое от жесткого облучения космической радиацией. Деятельность человека изменяет сложившееся в природе равновесие. Сильное загрязнение атмосферы происходит в больших городах: 90% веществ, загрязняющих атмосферу, составляют газы и 10% — твердые частицы.
Наиболее опасным результатом загрязнения являются смоги. Смог появляется при неподвижном воздухе, когда, с одной стороны, отсутствуют горизонтальные ветры, а с другой — распределение температуры по высоте атмосферы таково, что отсутствует вертикальное перемешивание атмосферных слоев. Перемешивание, или конвекция, воздуха в тропосфере происходит за счет того, что по мере движения вверх от земли через каждые 100 метров температура снижается на 0,6°С. Па высоте 8—18 км изменение температуры меняет знак, то есть на

ступает потепление. Такое явление называется инверсией. При определенных условиях инверсия температуры наблюдается уже в нижних слоях тропосферы и ведет к прекращению перемешивания воздуха выше уровня инверсии. Иногда в зимние месяцы можно наблюдать местонахождение инверсии между загрязненным нижним слоем воздуха и верхним прозрачным слоем.
Смоги бывают двух типов. Смог, называемый лондонским, наблюдается в туманную безветренную погоду. Весь дым не уносится ветром, а задерживается туманом и остается над городом, производя тяжелое действие на здоровье людей. В Лондоне в дни таких сильных смогов было отмечено повышение смертности. Замена твердого топлива газообразным значительно уменьшает задымление.
Второй тип смогов — фотохимический, появляется в больших южных городах в безветренную ясную погоду, когда скапливаются окислы азота, содержащиеся в выхлопных газах автомобилей. Эти соединения под действием солнечного излучения проходят цепь химических превращений. Основными компонентами фотохимического смога являются: озон, двуокись азота NO2 и закись азота N20. Скапливаясь в больших количествах, эти вещества и продукты их распада под действием ультрафиолетового излучения вступают в химическую реакцию с находящимися в атмосфере углеводородами CnHn. В результате образуются химически активные органические вещества пероксилацилнитраты (ПАН), которые оказывают вредное влияние на организм человека: раздражают слизистую оболочку, ткани дыхательных путей и легких, эти соединено ния обесцвечивают зелень растений. Вредное воздействие на окружающую среду и организм человека оказывает избыток в смоге озона, обладающего сильным окислительными свойствами.
Углеводороды в смоге частично имеют естественное происхождение. Метан выделяется при разложении и гниении растений. Другие углеводороды выделяются в результате работы нефтеперегонных заводов, двигателей внутреннего сгорания.
На долю автотранспорта приходится до 50% общего объема атмосферных выбросов техногенного происхождения, в состав автомобильных выбросов входит более 170 токсичных компонентов. Вблизи дорог с высокой интенсивностью автомобильного движения наблюдаются более или менее отчетливые воздействия на почву, растения и животных.
Дизели представляют собой основной источник загрязнений углеводородами, в том числе канцерогенными циклическими углеводородами, которые содержатся в саже, выбрасываемой дизельными двигателями.
Загрязнение воздуха при работе двигателя автомобиля происходит за счет того, что продукты сгорания топлива выбрасываются из него прямо в воздух. Наиболее вредными из компонентов выхлопных газов являются окись углерода, углеводороды и окислы азота* Согласно рекомендации всемирной организации здравоохранения (ВОЗ), концентрация СО в течение восьми часов не должна превышать 10 мг/м3 [27], большие концентрации СО ведут к необратимым изменениям в организме. Опасная концентрация СО наблюдается на больших перекрестках в часы интенсивного движения авто-

транспорта. Молекулы окиси углерода соединяются с гемоглобином, который переносит кислород, возникает кислородное голодание. Его признаки — покраснение кожи, мышечная слабость. Предотвратить необратимые изменения в организме может только вдыхание кислорода, тем эффективнее, чем выше давление кислорода (для спасения людей в тяжелых случаях применяется барокамера).
Наряду с этими компонентами существенную роль играют примеси, действие которых проявляется при малых концентрациях. Такой примесью является тетраэтилсвинец, который используется в качестве присадки к бензину и служит для предотвращения детонации топлива в двигателе. Количество его по весу немногим менее 0,1%. Работающие двигатели автомобилей ежегодно выбрасывают в атмосферу около двух миллионов тонн свинца. В результате свинец появляется уже в овощах в количестве до мг/кг. Установлено, что плоды деревьев, растущих в полосе до 50 метров возле автострады не следует употреблять в пищу. Избыток свинца в организме ведет к свинцовому отравлению, которое проявляется вначале в неврозах, бессоннице, утомляемости, затем в депрессиях, ухудшении умственных способностей. Соединения свинца обладают выраженным эмбрио- и гонадотропным действием.
Важным компонентом атмосферы является сера, которая входит в состав сульфатных аэрозолей, одного из наиболее распространенных видов аэрозолей в атмосфере. В глобальных масштабах выбросы SO4 составляют 160—180 млн тонн в год. Из них 90% приходится на сжигание минерального топлива и 10% на выбросы металлургических и химических предприятий. Под действием ультрафиолетового излучения сернистый ангидрид превращается в серный ангидрид S03, который с атмосферным водяным паром образует сернистую кислоту. Сернистая кислота спонтанно превращается в серную кислоту, очень гигроскопичную, способную образовывать токсичный туман. ПДУ SO2 в воздухе составляет 100—150 мг/м3 [27].
Очень опасными загрязнителями биосферы являются окислы азота. Ежегодно в атмосферу Земли поступает около 150 млн. тонн окислов азота, половина из которых выбрасывается тепловыми электростанциями и автомобилями, а другая половина образуется в результате процессов окисления, происходящих в биосфере. Сильно ухудшает видимость на улицах города перекись азота — газ желтого цвета, придающий коричневатый оттенок воздуху. Этот газ поглощает ультрафиолетовые лучи, производя фотохимическое загрязнение.
Окись азота при взаимодействии с кислородом воздуха образует двуокись азота, которая в результате реакции с атмосферным водяным паром (радикалом гидроксила воды) превращается в азотную кислоту. Двуокись азота NO2, раздражает органы дыхания, вызывает кашель, при больших концентрациях — рвоту, головную боль.
Азотная кислота может долго оставаться в газообразном состоянии, так как она плохо конденсируется, и при больших концентрациях может вызвать отек легких.
Капли облаков конденсируются на частицах аэрозолей и молекулах серной и азотной кислоты. При выпадении осадков промывается слой атмосферы между облаком и землей. Так образуются кислотные дожди. Их появление вызвано значительным накоплением окислов серы и азота в атмосфере.
Кислотные дожди подавляют биологическую продуктивность почв и водоемов, наносят значительный экономический ущерб. Кислотность осадков оценивается водородным показателем рН, равным отрицательному десятичному логарифму концентрации ионов водорода. Так, при изменении концентрации ионов от IO-1Ao I О14 pH принимает значения от I до 14. Концентрация ионов водорода в чистой дистиллированной воде при комнатной температуре равна IO-7 моль/л, что соответствует pH=7 для нейтральной среды.
В химии кислотами считаются растворы с рН меньше 5,6. Растворы с рН больше 5,6, относятся к щелочным. Кислотность дождей обусловлена, главным образом, присутствием серной и азотной кислот. При сильной кислотности осадков рН может быть ниже 4,0 и при слабой кислотности рН превышает 5,5. Кислотные аэрозольные частицы имеют небольшую скорость осаждения и могут переноситься в отдаленные районы на 100...1000 километров от источников загрязнений.
Кислотные дожди ведут к разрушению различных объектов и зданий, взаимодействуют с карбонатом кальция песчаников и известняка, превращая его в гипс, который вымывается дождями. Кислотные дожди вызывают активную коррозию металлических предметов и конструкций.
Под воздействием кислотных дождей изменяются биохимические свойства почвы, что ведет к заболеванию и гибели некоторых видов растений. Промышленные выбросы привели к возрастанию со

держания тяжелых металлов в отдельных элементах биосферы в десятки и сотни раз. Тяжелые металлы поступают в атмосферу и возвращаются обратно с осадками и вследствие сухого осаждения. В результате изменения рН почвы и воды изменяется растворимость в них тяжелых металлов.
Загрязнителями атмосферы принято считать наиболее токсичные металлы, ПДК которых в воздухе менее 1 мг/м3. Это Be, V, Cd, Co, Mn, Cu, As, Ni, Hg, Pb, Se, Ag, Sb, Cr, Zn. Источниками тяжелых металлов являются выбросы металлургических предприятий, предприятий вторичной переработки цветных металлов и стали, выбросы от сжигания угля, нефти, древесины, городских отходов, производства хлора, стекла, минеральных удобрений, цемента.
Кислотные дожди, взаимодействуя с тяжелыми металлами в почве, переводят их в легко усваиваемую растениями форму. Далее по пищевой цепи тяжелые металлы попадают в организмы рыб, животных и человека. До определенных пределов живые организмы защищены от прямого вредного воздействия кислотности, но накопление тяжелых металлов опасно. Так, алюминий, растворимый в кислотной среде, ядовит для живущих в почве микроорганизмов, ослабляет рост корней растений. Кислотные дожди, закисляя воды озер, ведут к гибели их обитателей. Очевидно, что содержание цинка и кадмия в свинине и говядине часто превышает допустимые уровни.
Попадая в организм человека, тяжелые металлы вызывают в нем изменения. Ионы тяжелых металлов легко связываются с белками (в том числе с ферментами), подавляя синтез макромолекул и в целом обмен веществ в клетках. Так, например, кадмий накапливается в почках, поражает почки и нервную систему человека, при больших количествах приводит к тяжелым специфическим заболеваниям.
Сжигание горючих ископаемых и других видов топлива сопровождается выбросом углекислого газа в атмосферу. Увеличение количества углекислого газа в результате антропогенного воздействия ведет к изменению теплового баланса Земли. Углекислый газ пропускает падающее на Землю солнечное излучение, но поглощает отраженное от Земли длинноволновое инфракрасное излучение. Это приводит к нагреванию атмосферы. Загрязняющие примеси и пыль в атмосфере поглощают часть падающего на Землю излучения, что дополнительно повышает температуру атмосферы.
Нагретая атмосфера посылает дополнительный поток тепла на землю, поднимая ее температуру. Этот процесс называется парниковым по аналогии с парником, в который свободно проходит солнечное излучение в оптической части спектра, а инфракрасное излучение задерживается. По мере увеличения загрязнения атмосферы увеличивается температура поверхности земли. Особенно характерно проявление парникового эффекта в городах с промышленным производством — температура в центре оказывается на несколько градусов выше температуры в окрестностях города, особенно в безветренную погоду.
Основной источник атмосферной пыли — добыча и использование стройматериалов, металлургическая промышленность. В пыли много различных минералов (гипс, асбест, кварц и др.), около 20% окиси железа, 15% силикатов, 5% сажи, окисей различных металлоидов. Поступление техноген-ных частиц в атмосферу Земли составляет ежегодно 500 млн тонн. Пыль создает экран доя солнечной радиации, из-за загрязнений крупные города получают на 15% меньше солнечного света. Пыль в атмосфере ведет к появлению и обострению респираторных и легочных заболеваний.
Увеличение средней температуры атмосферы на несколько градусов за счет уменьшения ее прозрачности способно вызвать таяние ледников и повышение уровня моря. Это может сопровождаться затоплением плодородных земель в дельтах рек, изменением солености воды, а также глобальным изменением климата Земли.
Разрушительное действие оказывает антропогенное воздействие на атмосферный озон. Озон в стратосфере защищает все живое на Земле от вредного действия коротких волн солнечной радиации. Уменьшение содержание озона в атмосфере на 1% приводит к увеличению на 2% интенсивности падающего на поверхность Земли жесткого ультрафиолетового излучения, губительного для живых клеток.
Во время работы реактивных двигателей при сжигании топлива азот и кислород воздуха образуют небольшое количество окислов азота, которые выбрасываются в атмосферу вместе с продуктами сгорания. Если это происходит на небольших высотах, окислы азота возвращаются на землю с осадками. Если же окислы азота выбрасываются выше облаков, то они долго (порядка года) находятся в атмосфере и принимают участие в разрушении озона. Оценки показывают, что ежедневное нахождение на высоте 17 километров примерно 300 сверхзвуковых самолетов ведет к уменьшению количества стратосферного озона на 1 %.
Наиболее сильное разрушение озона связано с производством фреонов CC12F2 и CC13F и др. Фрео- ны используются в качестве наполнителей аэрозолей, пенящей компоненты и в качестве рабочего вещества холодильников. При использовании баллончиков с аэрозолями, при утечке из холодильных резервуаров фреон попадает в атмосферу. Фре- оны безвредны для человека, химически пассивны. Попадая в атмосферу, на высоте в несколько десятков километров фреоны под действием жесткого ультрафиолетового излучения Солнца разлагаются на составляющие компоненты. Одна из образующихся компонент — атомарный хлор — активно способствует разрушению озона, причем, молекула хлора действует как катализатор, оставаясь неизменной в десятках тысяч актов разрушения молекул озона. Время нахождения фреонов в стратосфере составляет несколько десятков лет. Проблема влияния фреонов на стратосферный озон приобрела международное значение, особенно в связи с образованием «озоновых дыр». Принята международная программа сокращения производства, использующего фреоны.
Иногда метеорологические условия способствуют накоплению вредных примесей у приземной поверхности. Ветер может дуть вдоль ряда источников примесей, при этом примеси суммируются. При

сильном ветре вредные примеси перемещаются и рассеиваются в более близких к земле слоях.
Наличие изотермических или инверсных слоев, уменьшающих вертикальный обмен в атмосфере, создает опасные метеорологические условия низких подинверсных выбросов. Выбросы выше инверсии способствуют переносу техногенных примесей на большие расстояния. Возрастает опасность значительного загрязнения удаленных территорий, Зимой создаются более благоприятные условия для накопления примесей и концентрации окислов азота в атмосфере выше, чем летом.
<< | >>
Источник: Хван Т.А., Хван П.А.. Безопасность жизнедеятельности. Серия «Высшее образование». Ростов н/Д: «Феникс». — 416 с.. 2004

Еще по теме Антропогенное загрязнение атмосферы:

  1. Гальперин М. В.. Экологические основы природопользования, 2003
  2. В. Т. Харчева. Основы социологии / Москва , «Логос», 2001
  3. Тощенко Ж.Т.. Социология. Общий курс. – 2-е изд., доп. и перераб. – М.: Прометей: Юрайт-М,. – 511 с., 2001
  4. Е. М. ШТАЕРМАН. МОРАЛЬ И РЕЛИГИЯ, 1961
  5. Ницше Ф., Фрейд З., Фромм Э., Камю А., Сартр Ж.П.. Сумерки богов, 1989
  6. И.В. Волкова, Н.К. Волкова. Политология, 2009
  7. Ши пни Питер. Нубийцы. Могущественная цивилизация древней Африки, 2004
  8. ОШО РАДЖНИШ. Мессия. Том I., 1986
  9. Басин Е.Я.. Искусство и коммуникация (очерки из истории философско-эстетической мысли), 1999
  10. Хендерсон Изабель. Пикты. Таинственные воины древней Шотландии, 2004
  11. Ишимова О.А.. Логопедическая работа в школе: пособие для учителей и методистов., 2010
  12. Суриков И. Е.. Очерки об историописании в классической Греции, 2011
  13. Бхагван Шри Раджниш. ЗА ПРЕДЕЛАМИ ПРОСВЕТЛЕНИЯ. Беседы, проведенные в Раджнишевском Международном университете мистицизма, 1986
  14. Фокин Ю.Г.. Преподавание и воспитание в высшей школе, 2010
  15. И. М. Кривогуз, М. А. Коган и др.. Очерки истории Германии с Древнейших времен до 1918, 1959