загрузка...

ПЕРИОДИЧЕСКИЕ ГЕОЛОГИЧЕСКИЕ СОБЫТИЯ И ИХ ВЛИЯНИЕ НА ВЫМИРАНИЕ И ПОЯВЛЕНИЕ ОРГАНИЗМОВ

  Земля - динамично, но отнюдь не хаотично развивающийся объект. Ученые заметили, что многие геологические процессы протекают с определенной периодичностью. По мнению Е.Е.Милановского (1995), существует "многоуровневая иерархическая система пульсационных циклов разных рангов и длительности". Так, цикличность кимберлитового и траппового плитного магматизма исчисляют по-разному: Б.А.Мальков обосновывает периодичность этих процессов в 215 млн. лет колебаниями системы Земля - Луна; В.Ф.Кривонос считает периоды кимберлитооб-

разования короче (40-45 млн. лет) и делит их на 20 циклов; В.А.Милашев выделяет 17 эпох этого процесса, связывая их с пересечением Солнечной системой магнитных и радиационных поясов, что возбуждает электромагнитные потоки в земных недрах. Н.Л.Добрецов (1993) считает, что в геологической истории доминирует периодичность 30-35 млн. лет, связанная с глубинной геодинамикой (периодические мантийные суперплюмы на границе ядро - мантия).
Периодический характер имело также возрастание радиоактивности, влиявшее на ход биологических процессов. По мнению С.Г.Неручева (1999), радиоактивность как сильный мутагенный фактор, была главной причиной проявления крупных биологических событий в истории Земли; Многие черносланцевые породы накапливались в морских или озерных бассейнах, концентрация водорастворенного урана в которых превышала нормальную для современного океана, по крайней мере, в десятки - сотни раз. На континентах в то же самое время накапливались обогащенные органическим веществом радиоактивные речные осадки, концентрация урана в которых превышает кларковую в тысячи - десятки тысяч раз. Высокая радиоактивность среды в эти кратковременные эпохи (1-3 млн. лет) была, по мнению С.Г.Неручева, причиной интенсивного вымирания существовавших и быстрого возникновения новых видов фауны и флоры. Особенно интенсивно мутационный процесс шел, по мнению В.М.Подобиной и Г.М.Татьянина (Эволюция.., 1997), в активных зонах Земли (рифты, глубинные разломы и т.п.).
Наиболее обоснованное детальное представление о палеобиологических событиях дают в
последние годы работы Дж. Сепкоски (1984-1990). Однако их недостатком является освещение
только одной стороны мутационного процесса - вымирания фауны, хотя не менее важной является оценка и другой его стороны - возникновения новых видов фауны и флоры. Именно поэтому,
например, Дж. Сепкоски не выделил очень крупное биологическое событие на границе венда -
кембрия, которое характеризуется не вымиранием, а внезапным 'появлением первой в истории
Земли скелетной фауны во время накопления радиоактивных черных сланцев и иридия.
Некоторые исследователи отмечают большую роль космических факторов в изменении биосферы. В 1980 г. появилась гипотеза Л.В.Альвареса с сотрудниками о внезапном ультракатастрофическом вымирании фауны на границе мела и палеогена в результате удара о Землю и взрыва крупного космического тела. Она была высказана на основании того, что источником повышенной концентрации 1г в пограничном слое могло быть якобы только внеземное, космическое вещество взорвавшегося астероида. Однако уже через три года было установлено, что из вулкана Килауэа без какого-либо участия космоса, вместе с газами поступают иридий и другие элементы, характерные для пограничного слоя. Стало быть, мантия Земли во время интенсивного базальтового вулканизма, который имел место в конце мела, могла быть не менее вероятным, чем космос, источником поступления иридия на поверхность Земли.
Палеонтологические данные не подтверждают мгновенного вымирания фауны. В конце мела вымирание (рудистов, иноцерамов, аммонитов и др.) не было мгновенным, а происходило в течение 1-2 млн. лет до отложения пограничного слоя с иридием. Вымирание динозавров также было весьма длительным и завершилось не позднее чем за 200-150 тыс. лет до предполагаемого взрыва астероида. С пограничным слоем и Ir-аномалией, по детально изученным разрезам, совпадало вымирание только некоторых видов меловых планктонных фораминифер, что было лишь последним незначительным эпизодом в общем событии позднемелового вымирания фауны. Но и этот факт вписывается в общую картину из-за наличия скрытого перерыва в изученных глубоководных разрезах осадков на границе мела - палеогена.
Р.Мак-Картни с соавторами (1990) обосновали гипотезу эндогенных причин происходивших массовых вымираний. К этой точке зрения их привело совпадение во времени между установленными массовыми вымираниями и массированными базальтовыми излияниями, происходившими в мезокайнозое. Активное поступление мантийного материала к земной поверхности вызывало, по их мнению, усиление тектогенеза, изменение уровня моря и климата. С базальтовыми излияниями

связан вынос в тропосферу и нижнюю часть стратосферы больших объемов серы, углерода, галогенов и пеплового материала. В результате образования сернистых аэрозолей проявлялось глобальное похолодание. Большие количества поступавшего СО2 при взаимодействии с водой способствовали возникновению кислотных свойств воды, проявлению карбонатного кризиса. Совместно с действием галогенов и серными кислотными дождями это могло производить драматические изменения в химии океана и вызывать экологический стресс у морских организмов с кальцитовым скелетом, особенно у живущих в поверхностных водах.
По мнению многих авторов, Ir-аномалия и другие химические изменения на границе мела -палеогена лучше объясняются земным механизмом, чем ударом о Землю космического тела.
Как указывалось выше, С.Г.Неручев (1999) дает несколько другое объяснение периодичности в развитии биоты. Он обращает внимание на произошедшие в фанерозое 17 крупных событий, связанных с повышением радиоактивности среды, оживлением рифтогенеза и магматических процессов, в частности, базальтового вулканизма. В эти периоды шло формирование урановых месторождений и накопление морских ураноносных черных сланцев. Следствиями этих процессов явились массовые вымирания, а также появление (под влиянием радиогенных мутаций) новых таксонов фауны и флоры. Периодичность этих событий С.Г.Неручев тоже отождествляет с длительностью галактического года примерно в 216-217 млн. лет (вслед за П.П.Паренаго и другими учеными, см. выше). В течение ГГ С.Г.Неручевым выделяются более мелкие периоды продолжительностью около 30 млн. лет. Для фанерозоя предлагается периодическая система, состоящая из трех крупных периодов (галактических лет) и семи рядов геобиособытий, повлиявших на периодичность в развитии органического мира.
Первое событие фиксируется на границе венда и кембрия и связано с появлением первой в истории Земли скелетной фауны в подошве свиты радиоактивных фосфоритов и черных сланцев (Казахстан, Сибирь и др.). Далее С.Г.Неручев фиксирует не только события, связанные С вымиранием, но и с появлением новых групп фауны, приуроченные к горизонтам радиоактивных черных сланцев, фосфоритов и других пород. Нередко в этих горизонтах наблюдаются Ir-аномалии. Последнее, 17-е геобиособытие, проявилось в среднем миоцене небольшим пиком интенсивности вымирания морской фауны.
Начиная с позднепермского события, почти все они характеризуются проявлением интенсивных базальтовых излияний на континентах.

Какой бы концепции ни придерживались разные исследователи - космических гипотез, астероидных ударов или доминирования земных причин, — важно одно — в разные годы, в разных странах различные исследователи объективно и независимо пришли к выделению в фанерозойской истории одних и тех же кризисных геобиособытий.
Если считать, что за 570 млн. лет (с начала кембрия до среднего миоцена) проявилось 17 кризисных геобиособытий, то их средняя периодичность составляет 33,5 млн. лет, а если 18 (есть и такая точка зрения), то 31,6 млн. лет. Периодичность континентальных базальтовых излияний для времени 0-250 млн. лет определена в 32 ± 1 млн. лет; периодичность проявления карбонатитовых интрузий - в 34 ± 2 млн. лет; кимберлитовых интрузий - в 35 ± 1 млн. лет; периодичность спре-динга - в 34 ± 2 млн. лет; падение уровня моря — 33 ± 1 млн. лет; проявление тектонических максимумов - в 33 ± 3 млн. лет; появление импактных кратеров - в 32 ± 2 млн. лет; проявление массовых вымираний - в 24-33 млн. лет.
Таким образом, средняя периодичность различных геологических, биологических и даже космических событий (падение космических тел и образование импактных кратеров), по данным разных авторов, составляет около 30 млн. лет.
В первом фанерозойском галактическом году (кембрий-девон, 216 млн. лет) проявилось семь кратковременных эпох накопления морских радиоактивных ураноносных сланцев, совпадающих с эпохами трансгрессий. С позиций тектоники плит подъем уровня моря во время трансгрессии

определяется возрастанием скорости спрединга, интенсивным поступлением мантийного матери-ала и формированием протяженных поднимающихся срединно-океанических хребтов. Это уменьшает емкость океана, определяет повышение уровня моря и трансгрессию на сушу. С этих пози-, ций формирование радиоактивных черных сланцев происходило в эпохи усиления рифтогенеза, возрастания скоростей спрединга и поступления в океаны по разломам значительных объемов мантийных базальтов. В соответствии с пульсационной гипотезой подобные события происходили в эпохи расширения Земли.
Второй галактический год (начало карбона - конец юры, 216 млн. лет), как и первый, характеризуется проявлением семи кратковременных эпох накопления морских радиоактивных черных сланцев, семи трансгрессий и семи крупных биологических событий, которые отличаются ано-. мально высокой биопродукцией фитопланктона, интенсивным вымиранием существовавших и возникновением новых видов организмов. Почти во все эти эпохи накапливались не только черные сланцы, но и иридий; интенсивно формировались промышленные месторождения урана.
Третий галактический год начался с конца юры - начала мела и продолжается до настоящего „времени. В этом пока не завершенном году проявилось пять основных эпох накопления черных радиоактивных сланцев, характеризующихся также повышенной концентрацией иридия и проявле1 . нием интенсивных базальтовых излияний на континентах. В соответствии с построениями Дж.Сепкоски, всем этим пяти крупным событиям соответствуют максимумы вымирания морской фауны (на границе юры и мела, сеномана-турона, мела и палеогена, в эоцене-олигоцене и среднем-верхнем миоцене). Правильнее все же, по мнению Э.Д.Кауфмана (1986) и С.Г.Неручева (1999), говорить не о событиях вымирания, а о событиях возрастания интенсивности мутационного процеСт са в условиях повышенной радиоактивности среды, поскольку эти эпохи характеризуются и всплеском таксонообразования. Типичным для этих событий было также глобальное "цветение" фитопланктона, в основном цианобактерий, накапливавших уран и постепенно за счет отмирания выводивших его избыток в осадки.
Таким образом, периодическая система кризисных геобиособытий, по С.Г.Неручеву, включа-ет в себя большие периоды (галактические годы) с продолжительностью в 216-217 млн. лет и соподчиненные им более мелкие события с периодичностью проявления около 33 млн. лет; каждое .геобиособытие следующего галактического года происходит через 216-217 млн. лет после проявления его аналога в предшествовавшем галактическом году, т.е. ровно через галактический год. Земля и ее биосфера существуют и развиваются, подчиняясь строгой ритмичности, как очень сложная саморегулирующаяся космическая система. Как земной год определяется временем обращения Земли вокруг Солнца, так и галактический год Солнечной системы определяется временем ее обращения по эллиптической орбите вокруг центра Галактики и составляет, по астрономическим расчетам П.П.Паренаго (1950, 1952), 212 млн. лет, а по абсолютной геохронологии периодических земных событий - 216-217 млн. лет.
С.Г.Неручев и другие ученые считают, что разные по продолжительности времена галактического года связаны с изменением скорости движения Солнца и Солнечной системы по галактической орбите. В апогалактии ("летом") Солнце движется со скоростью 800 км/с, в перигалактии ("зимой") - 400 км/с. Вследствие изменения масс и пульсации тел Солнечной системы, Солнце должно разогреваться в апогалактии и охлаждаться в перигалактии. Это вызывает активизацию геологических процессов "летом" и гляциальные события "зимой".
Преобладающая часть земных гляциальных событий действительно приходится на "осенне-зимний" период при снижении абсолютной скорости Солнца (оледенения конца ордовика - начала силура, конца перми - начала триаса, раннеюрское гляциальное событие, палеогеновые и неогеновые гляциальные события) (рис. 28). В противоположность этому "весенне-летний" период характеризуется проявлением активного углеобразования и угленакопления, формированием во втором и третьем галактических годах более 70% мировых запасов углей.


Рис. 28. Проявление геобиособытий на орбите Солнечной системы вокруг центра Галактики
Таким образом, между апогалактием ("лето") и перигалактием ("зима"), т.е. во время большей части галактического года происходит спокойная эволюция земной коры и биосферы, нарушаемая каждые 30 млн. лет проявлением кризисов, скачков в развитии подчиненного значения. Закономерная периодичность проявления кризисов в развитии Земли и ее биосферы, как и продолжительность галактического года, несомненно обусловлены влиянием космоса. В указанную периодичность вписываются и импактные события, т.е. образование кратеров вследствие ударов о Землю космических тел.
Рис. 28. Проявление геобиособытий на орбите Солнечной системы вокруг центра Галактики: / - галактиче^ кие годы; 2 - кризисные геобиособытия; 3 - гляциаль-ные события (по С.Г.Неручеву, 1999)
Таким образом, наиболее вероятная космическая причина кризисных событий усматривается в регулярных пересечениях Солнечной системой галактической плоскости со сгущениями материи, происходящих каждые 33 ± 3 млн. лет вследствие вертикальной осцилляции Солнца при движении по орбите вокруг центра Галактики.
Изучение этих и других периодических процессов в литосфере и биосфере нашей планеты продолжается и, возможно, приведет в дальнейшем, при накоплении достаточного количества данных, к пересмотру принципов построения глобальной геохронологической шкалы.

 
<< | >>
Источник: В.М.Подобина, С.А.Родыгин. ИСТОРИЧЕСКАЯ ГЕОЛОГИЯ. 2000

Еще по теме ПЕРИОДИЧЕСКИЕ ГЕОЛОГИЧЕСКИЕ СОБЫТИЯ И ИХ ВЛИЯНИЕ НА ВЫМИРАНИЕ И ПОЯВЛЕНИЕ ОРГАНИЗМОВ:

  1. О.П. Бибикова, к.э.н. Н.Н. Цветкова. Страны Востока в контексте современных мировых процессов: социально-политические, экономические, этноконфес- сиональные и социокультурные проблемы., 2013
  2. Ши пни Питер. Нубийцы. Могущественная цивилизация древней Африки, 2004
  3. Гальперин М. В.. Экологические основы природопользования, 2003
  4. В. Т. Харчева. Основы социологии / Москва , «Логос», 2001
  5. Тощенко Ж.Т.. Социология. Общий курс. – 2-е изд., доп. и перераб. – М.: Прометей: Юрайт-М,. – 511 с., 2001
  6. Е. М. ШТАЕРМАН. МОРАЛЬ И РЕЛИГИЯ, 1961
  7. Ницше Ф., Фрейд З., Фромм Э., Камю А., Сартр Ж.П.. Сумерки богов, 1989
  8. И.В. Волкова, Н.К. Волкова. Политология, 2009
  9. ОШО РАДЖНИШ. Мессия. Том I., 1986
  10. Басин Е.Я.. Искусство и коммуникация (очерки из истории философско-эстетической мысли), 1999
  11. Хендерсон Изабель. Пикты. Таинственные воины древней Шотландии, 2004